
IvorySQL
Version v3.2, 2024-04-18

Table of Contents
Welcome. 1
Release . 2
About . 4
Getting Started with IvorySQL . 7

Quick Start . 7
Monitoring. 10
Maintenance . 55

IvorySQL Advanced Feature . 81
Installation . 81
Building Cluster. 86
Developer . 91
Operation Management . 181
Migration . 219

IvorySQL Ecosystem . 237
PostGIS . 237
pgvector . 239

List of features . 243
1、Ivorysql frame design. 243

1. Objective. 244
2、GUC Framework. 244
3、Case conversion . 247
4、Dual-mode design . 254
5、Compatible with oracle like . 255
6、Compatible with oracle anonymous block . 257
7、Compatible with Oracle functions and stored procedures . 257
8、Built-in data types and built-in functions . 259
9、Added Oracle compatibility mode ports and IP . 278
10、XML Function. 279

Community contribution . 285
Tool Reference. 307
FAQ . 430

Welcome
IvorySQL is the only Oracle compatible open source PostgreSQL.

Getting Started
Get started by Downloading the code from Github.

Releases
Go to IvorySQL Release Page.

About IvorySQL
IvorySQL project is an open source project proposed by Highgo Software to add the Oracle compatibility
features into the popular PostgreSQL database.

It is open source and free to use, any comments please contact contact@highgo.ca

Docs Download
IvorySQL v3.2 pdf documentation

1

https://github.com/IvorySQL/IvorySQL
https://www.ivorysql.org/releases-page
mailto:contact@highgo.ca
https://docs.ivorysql.org/en/ivorysql-doc/v3.2/ivorysql.pdf

Release
Version Overview
[Release date: April 11, 2024]

IvorySQL 3.2, based on PostgreSQL 16.2, introduces Oracle XML function compatibility features along with a
variety of bug fixes. For a comprehensive list of updates, please visit our documentation site.

Enhancements
• Oracle XML Function Compatibility

This Feature integrates compatibility for various Oracle XML functions, including APPENDCHILDXML,
DELETEXML, EXISTSNODE, EXTRACT(XML), EXTRACTVALUE, INSERTCHILDXMLAFTER,
INSERTCHILDXMLBEFORE, INSERTCHILDXML, INSERTXMLAFTER, INSERTXMLBEFORE and UPDATEXML.
For further details, visit issue #587.

• PostgreSQL 16.2 Enhancements

1. Ensure durability of CREATE DATABASE
2. Ensure that column default values are correctly transmitted by the pgoutput logical replication

plugin
3. Re-validate a subscription’s connection string before use
4. Return the correct status code when a new client disconnects without responding to the server’s

password challenge
5. In PL/pgSQL, support SQL commands that are CREATE FUNCTION/CREATE PROCEDURE with SQL-

standard bodies
For further details, visit PostgreSQL’s release notes.

Fixed Issue
• Resolved documentation build failure: Issue #645
• Eliminated build warnings: Issue #649
• Corrected parameter issue with the to_date function: Issue #592
• Fix label issues in create function: Issue #624

Source Code
IvorySQL’s development is maintained across two main repositories:

• IvorySQL database source code: https://github.com/IvorySQL/IvorySQL

• IvorySQL official website: https://github.com/IvorySQL/Ivory-www

Contributors
The following individuals (in alphabetical order) have contributed to this release as patch authors,
committers, reviewers, testers, or reporters of issues.

• Bei Fu
• Cary Huang
• David Zhang

2

https://docs.ivorysql.org/
https://github.com/IvorySQL/IvorySQL/issues/587
https://www.postgresql.org/docs/release/16.2/
https://github.com/IvorySQL/IvorySQL/issues/645
https://github.com/IvorySQL/IvorySQL/issues/649
https://github.com/IvorySQL/IvorySQL/issues/592
https://github.com/IvorySQL/IvorySQL/issues/624
https://github.com/IvorySQL/IvorySQL
https://github.com/IvorySQL/IvorySQL
https://github.com/IvorySQL/IvorySQL
https://github.com/IvorySQL/IvorySQL
https://github.com/IvorySQL/IvorySQL
https://github.com/IvorySQL/Ivory-www
https://github.com/IvorySQL/Ivory-www
https://github.com/IvorySQL/Ivory-www
https://github.com/IvorySQL/Ivory-www
https://github.com/IvorySQL/Ivory-www

• Grant Zhou
• Jiao Ren
• Lei Shang
• Leo X.M. Zeng
• Lily Wang
• Nan Jia
• Shawn Yan
• Shiji Niu
• Shoubo Wang
• Shuntian Jiao
• Xiangyu Liang
• Xinjie Lv
• Xinyuan Guo
• Xiuhua Ruan
• Xueyu Gao
• Ying Huang
• Yonghao Li
• Zheng Liu

3

About
Introduction to IvorySQL
Overview
IvorySQL is an advanced, full-featured, Oracle open source compatible PostgreSQL with a firm commitment
to always remain 100% compatible and a direct replacement for the latest PostgreSQL. IvorySQL adds a GUC
parameter called 'ivorysql.compatible_mode' to control the compatibility mode of IvorySQL, which has two
values: 'oracle' and 'pg'.When initializing the data directory, specify the compatibility mode of the data
directory by specifying the '-m' parameter, and '-m pg' then the data directory is PostgreSQL mode.In this
mode, the 'ivorysql.compatible_mode' parameter will be invalidated, and the '-m oracle' or if the '-m'
parameter is not specified, the data directory will be compatible with Oracle mode.In this mode, the initial
value of the 'ivorysql.compatible_mode' parameter is 'oracle' and does not support some PostgreSQL
syntax, and the database can support 100% of PostgreSQL syntax and functions by 'set
ivorysql.compatible_mode to pg'.

One of the highlights of IvorySQL is the PL/iSQL procedural language, which supports Oracle’s PL/SQL
syntax. At the same time, IvorySQL implements Oracle-compatible functions by adding plug-ins ivorysql_ora
bound to the kernel, and the functions currently implemented include built-in functions, data types, system
views, merges, and the addition of GUC parameters, and will continue to implement new compatible
functions in the form of plug-ins bound to the kernel in the future.

Product Goals and Scope
We are committed to the principles of the open source approach and we strongly believe in building a
healthy and inclusive community. We insist that good ideas can come from anywhere. Only by including
different perspectives can we make the best decisions. While the first release of IvorySQL focuses on Oracle-
compatible features, the future roadmap and feature set will be defined by the community in an open
source manner.

Core Features
IvorySQL is developed based on PostgreSQL database and is compatible with Oracle database for strong
compatibility. Suitable for PostgreSQL database and Oracle database scenarios.

Competitive Advantages
• Core Open Source: IvorySQL’s core code including compatible features are all open under the open

source protocol, with no vendor restrictions. It is also used in Hankook database company instances and
has an active developer community.

• Oracle compatible: Oracle databases can be migrated to IvorySQL.
• Customizable: Simply download the code and customize it the way you want.
• Easy to use: For system administrators, IvorySQL dramatically reduces the cost of administration and

maintenance. For developers, IvorySQL provides a simple interface, a minimalist solution, and seamless
integration with third-party tools. For data analysis professionals, IvorySQL provides easy access to data.

• Hemco Support: Powered by the leading PostgreSQL database provider, Hemco.

Technical Ecology
IvorySQL is based on PostgreSQL, with complete SQL, rock-solid reliability and a huge ecosystem.

Core Application Scenarios
Ivory database’s main application scenarios.

• Enterprise database

4

https://opensource.com/open-source-way

For example, ERP, transaction system, financial system involves funds, customers
and other information, data cannot be lost and business logic is complex. Choosing
IvorySQL as the underlying data storage can help you provide high availability
under the premise of data consistency, and you can implement complex business logic
with simple programming.

• Applications with LBS

Large-scale games, O2O and other applications need to support world map, nearby
businesses, distance between two points and other capabilities. PostGIS adds
support for geographic objects, allowing you to run location queries in SQL without
complex coding, helping you to rationalize your logic more easily, implement LBS
more conveniently, and improve user stickiness.

• Data Warehousing and Big Data

With more data types and powerful computing power, IvorySQL makes it easier for you
to build a database warehouse or big data analytics platform to enhance your
business operations.

• Website or App Building

IvorySQL's good performance and powerful features can effectively improve website
performance and reduce development difficulty.

• Database Migration

If you need to migrate Oracle database to PostgreSQL database, you can directly use
IvorySQL database for migration.

Main, Basic Features
IvorySQL is a powerful open source object-relational database management system (ORDBMS). Used to
store data securely, support best practices, and allow them to be retrieved when requests are processed. In
addition, it is also compatible with Oracle’s syntax, which is suitable for scenarios where Oracle is used.

Compatibility with Oracle
• 1. Ivorysql frame design
• 2. GUC Framework
• 3. Case conversion
• 4. Dual-mode design
• 5. Compatible with Oracle like
• 6. Compatible with Oracle anonymous block
• 7. Compatible with Oracle functions and stored procedures
• 8. Built-in data types and built-in functions

5

https://docs.ivorysql.org/cn/ivorysql-doc/v3.2/v3.2/14
https://docs.ivorysql.org/cn/ivorysql-doc/v3.2/v3.2/15
https://docs.ivorysql.org/cn/ivorysql-doc/v3.2/v3.2/16
https://docs.ivorysql.org/cn/ivorysql-doc/v3.2/v3.2/17
https://docs.ivorysql.org/cn/ivorysql-doc/v3.2/v3.2/18
https://docs.ivorysql.org/cn/ivorysql-doc/v3.2/v3.2/19
https://docs.ivorysql.org/cn/ivorysql-doc/v3.2/v3.2/20
https://docs.ivorysql.org/cn/ivorysql-doc/v3.2/v3.2/21

• 9. Added Oracle compatibility mode ports and IP
• 10. XML Function

6

https://docs.ivorysql.org/cn/ivorysql-doc/v3.2/v3.2/22
https://docs.ivorysql.org/cn/ivorysql-doc/v3.2/v3.2/26

Getting Started with IvorySQL
Quick Start
Environmental requirements
• Hardware

Parameter Minimum Recommended
CPU 4 cores 16 cores
RAM 4GB 64GB
Storage 800MB,HDD 5GB+,SSD or NvMe
Network Gigabit network 10G network

• Software

Now, IvorySQL supports but is not limited to linux(CentOS 7.X/CentOS 8.X).

Quick installation

 The operating system used for the quick start is CentOS 7.9.

yum installation

• Pre-requirements

Before getting started, please create an user and grant it root privileges. All the installation steps will be
performed by this user. Here we just name it 'ivorysql'. How to create a sudo user

• installation

Run the following commands to perform yum installation:

$ sudo yum install -y https://yum.highgo.ca/dists/ivorysql-rpms/repo/ivorysql-release-
3.0-1.noarch.rpm

$ sudo yum install -y ivorysql3 ivorysql3-server ivorysql3-contrib ivorysql3-test
--skip-broken

IvorySQL will be installed in a folder named 'ivorysql-version', such as 'ivorysql-3', within the
/usr/local/ivorysql directory.

Grant ivorysql privileges:

$ sudo chown -R ivorysql:ivorysql /usr/local/ivorysql

• Setting environment variables

Add below contents in ~/.bash_profile file and source to make it effective:

7

https://www.ionos.com/help/server-cloud-infrastructure/server-administration/creating-a-sudo-enabled-user

PATH=/usr/local/ivorysql/ivorysql-3/bin:$PATH
export PATH
LD_LIBRARY_PATH=/usr/local/ivorysql/ivorysql-3/lib
export LD_LIBRARY_PATH
PGDATA=/usr/local/ivorysql/ivorysql-3/data
export PGDATA

$ source ~/.bash_profile

• Initializing database

$ initdb -D /usr/local/ivorysql/ivorysql-3/data

 The -D option specifies the directory where the database cluster should be stored.
This is the only information required by initdb, but you can avoid writing it by
setting the PGDATA environment variable, which can be convenient since the database
server can find the database directory later by the same variable.

 For more options, refer to initdb --help.

• Starting IvorySQL service

$ pg_ctl -D /usr/local/ivorysql/ivorysql-3/data -l ivory.log start

The -D option specifies the file system location of the database configuration files.
If this option is omitted, the environment variable PGDATA in <<setting-environment-
variables>> is used. -l option appends the server log output to filename. If the file
does not exist, it is created.

For more options, refer to pg_ctl --help.

Confirm it’s successfully started:

$ ps -ef | grep postgres
ivorysql 3214 1 0 20:35 ? 00:00:00 /usr/local/ivorysql/ivorysql-
3/bin/postgres -D /usr/local/ivorysql/ivorysql-3/data
ivorysql 3215 3214 0 20:35 ? 00:00:00 postgres: checkpointer
ivorysql 3216 3214 0 20:35 ? 00:00:00 postgres: background writer
ivorysql 3218 3214 0 20:35 ? 00:00:00 postgres: walwriter
ivorysql 3219 3214 0 20:35 ? 00:00:00 postgres: autovacuum launcher

8

ivorysql 3220 3214 0 20:35 ? 00:00:00 postgres: logical replication launcher
ivorysql 3238 1551 0 20:35 pts/0 00:00:00 grep --color=auto postgres

Running IvorySQL in docker

• Get IvorySQL image from Docker Hub

$ docker pull ivorysql/ivorysql:3.2-ubi8

• Running IvorySQL

$ docker run --name ivorysql -p 5434:5432 -e IVORYSQL_PASSWORD=your_password -d
ivorysql/ivorysql:3.2-ubi8

• Check if the IvorySQL container is running successfully

$ docker ps | grep ivorysql
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
6faa2d0ed705 ivorysql:3.2-ubi8 "docker-entrypoint.s…" 50 seconds ago Up 49
seconds 5866/tcp, 0.0.0.0:5434->5432/tcp ivorysql

Connecting to IvorySQL
Connect to IovrySQL via psql:

$ psql -d <database>
psql (16.2)
Type "help" for help.

ivorysql=#

 The -d option specifies the name of the database to connect to. ivorysql is the
default database of IvorySQL. However,IvorySQL of lower versions need the users
themselves to connect to postgres database at the first connection and then create the
ivorysql database.The latest IvorySQL can do all these for users.

 For more options, refer to psql --help.

When running IvorySQL in Docker, additional parameters need to be added, like: psql -d
ivorysql -U ivorysql -h 127.0.0.1 -p 5434

Now you can start your journey of IvorySQL! Enjoy!

To explore additional installation methods, please refer to the Installation.

9

Monitoring
Monitoring Database Activity

Standard Unix Tools

On most Unix platforms, IvorySQL modifies its command title as reported by ps, so that individual server
processes can readily be identified. A sample display is

$ ps auxww | grep ^postgres
postgres 15551 0.0 0.1 57536 7132 pts/0 S 18:02 0:00 postgres -i
postgres 15554 0.0 0.0 57536 1184 ? Ss 18:02 0:00 postgres: background
writer
postgres 15555 0.0 0.0 57536 916 ? Ss 18:02 0:00 postgres:
checkpointer
postgres 15556 0.0 0.0 57536 916 ? Ss 18:02 0:00 postgres: walwriter
postgres 15557 0.0 0.0 58504 2244 ? Ss 18:02 0:00 postgres: autovacuum
launcher
postgres 15558 0.0 0.0 17512 1068 ? Ss 18:02 0:00 postgres: stats
collector
postgres 15582 0.0 0.0 58772 3080 ? Ss 18:04 0:00 postgres: joe runbug
127.0.0.1 idle
postgres 15606 0.0 0.0 58772 3052 ? Ss 18:07 0:00 postgres: tgl
regression [local] SELECT waiting
postgres 15610 0.0 0.0 58772 3056 ? Ss 18:07 0:00 postgres: tgl
regression [local] idle in transaction

(The appropriate invocation of ps varies across different platforms, as do the details of what is shown. This
example is from a recent Linux system.) The first process listed here is the primary server process. The
command arguments shown for it are the same ones used when it was launched. The next four processes
are background worker processes automatically launched by the primary process. (The “autovacuum
launcher” process will not be present if you have set the system not to run autovacuum.) Each of the
remaining processes is a server process handling one client connection. Each such process sets its
command line display in the form

postgres: user database host activity

The user, database, and (client) host items remain the same for the life of the client connection, but the
activity indicator changes. The activity can be idle (i.e., waiting for a client command), idle in transaction
(waiting for client inside a BEGIN block), or a command type name such as SELECT. Also, waiting is appended
if the server process is presently waiting on a lock held by another session. In the above example we can infer
that process 15606 is waiting for process 15610 to complete its transaction and thereby release some lock.
(Process 15610 must be the blocker, because there is no other active session. In more complicated cases it
would be necessary to look into the pg_locks system view to determine who is blocking whom.)

If cluster_name has been configured the cluster name will also be shown in ps output:

$ psql -c 'SHOW cluster_name'
 cluster_name

10

 server1
(1 row)

$ ps aux|grep server1
postgres 27093 0.0 0.0 30096 2752 ? Ss 11:34 0:00 postgres: server1:
background writer
...

If you have turned off update_process_title then the activity indicator is not updated; the process title is set
only once when a new process is launched. On some platforms this saves a measurable amount of per-
command overhead; on others it’s insignificant.

Tip
Solaris requires special handling. You must use /usr/ucb/ps, rather than /bin/ps. You also must use
two w flags, not just one. In addition, your original invocation of the postgres command must have a
shorter ps status display than that provided by each server process. If you fail to do all three things,
the ps output for each server process will be the original postgres command line.

The Cumulative Statistics System

IvorySQL’s cumulative statistics system supports collection and reporting of information about server
activity. Presently, accesses to tables and indexes in both disk-block and individual-row terms are counted.
The total number of rows in each table, and information about vacuum and analyze actions for each table
are also counted. If enabled, calls to user-defined functions and the total time spent in each one are counted
as well.

IvorySQL also supports reporting dynamic information about exactly what is going on in the system right
now, such as the exact command currently being executed by other server processes, and which other
connections exist in the system. This facility is independent of the cumulative statistics system.

Statistics Collection Configuration

Since collection of statistics adds some overhead to query execution, the system can be configured to
collect or not collect information. This is controlled by configuration parameters that are normally set in
postgresql.conf.

The parameter track_activities enables monitoring of the current command being executed by any server
process.

The parameter track_counts controls whether cumulative statistics are collected about table and index
accesses.

The parameter track_functions enables tracking of usage of user-defined functions.

The parameter track_io_timing enables monitoring of block read and write times.

The parameter track_wal_io_timing enables monitoring of WAL write times.

Normally these parameters are set in postgresql.conf so that they apply to all server processes, but it is
possible to turn them on or off in individual sessions using the SET command. (To prevent ordinary users
from hiding their activity from the administrator, only superusers are allowed to change these parameters
with SET.)

Cumulative statistics are collected in shared memory. Every IvorySQL process collects statistics locally, then
updates the shared data at appropriate intervals. When a server, including a physical replica, shuts down
cleanly, a permanent copy of the statistics data is stored in the pg_stat subdirectory, so that statistics can be

11

https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-UPDATE-PROCESS-TITLE
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-ACTIVITIES
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-COUNTS
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-FUNCTIONS
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-IO-TIMING
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-WAL-IO-TIMING
https://www.postgresql.org/docs/current/sql-set.html

retained across server restarts. In contrast, when starting from an unclean shutdown (e.g., after an
immediate shutdown, a server crash, starting from a base backup, and point-in-time recovery), all statistics
counters are reset.

Viewing Statistics

Several predefined views, listed in Table 1 , are available to show the current state of the system. There are
also several other views, listed in Table 2 , available to show the accumulated statistics. Alternatively, one
can build custom views using the underlying cumulative statistics functions.

When using the cumulative statistics views and functions to monitor collected data, it is important to realize
that the information does not update instantaneously. Each individual server process flushes out
accumulated statistics to shared memory just before going idle, but not more frequently than once per
PGSTAT_MIN_INTERVAL milliseconds (1 second unless altered while building the server); so a query or
transaction still in progress does not affect the displayed totals and the displayed information lags behind
actual activity. However, current-query information collected by track_activities is always up-to-date.

Another important point is that when a server process is asked to display any of the accumulated statistics,
accessed values are cached until the end of its current transaction in the default configuration. So the
statistics will show static information as long as you continue the current transaction. Similarly, information
about the current queries of all sessions is collected when any such information is first requested within a
transaction, and the same information will be displayed throughout the transaction. This is a feature, not a
bug, because it allows you to perform several queries on the statistics and correlate the results without
worrying that the numbers are changing underneath you. When analyzing statistics interactively, or with
expensive queries, the time delta between accesses to individual statistics can lead to significant skew in the
cached statistics. To minimize skew, stats_fetch_consistency can be set to snapshot, at the price of
increased memory usage for caching not-needed statistics data. Conversely, if it’s known that statistics are
only accessed once, caching accessed statistics is unnecessary and can be avoided by setting
stats_fetch_consistency to none. You can invoke pg_stat_clear_snapshot() to discard the current
transaction’s statistics snapshot or cached values (if any). The next use of statistical information will (when
in snapshot mode) cause a new snapshot to be built or (when in cache mode) accessed statistics to be
cached.

A transaction can also see its own statistics (not yet flushed out to the shared memory statistics) in the views
pg_stat_xact_all_tables, pg_stat_xact_sys_tables, pg_stat_xact_user_tables, and
pg_stat_xact_user_functions. These numbers do not act as stated above; instead they update
continuously throughout the transaction.

Some of the information in the dynamic statistics views shown in Table 1 is security restricted. Ordinary
users can only see all the information about their own sessions (sessions belonging to a role that they are a
member of). In rows about other sessions, many columns will be null. Note, however, that the existence of a
session and its general properties such as its sessions user and database are visible to all users. Superusers
and roles with privileges of built-in role pg_read_all_stats can see all the information about all sessions.

Dynamic Statics Views

View Name Description
pg_stat_activity One row per server process, showing information

related to the current activity of that process, such as
state and current query.

pg_stat_replication One row per WAL sender process, showing statistics
about replication to that sender’s connected
standby server.

pg_stat_wal_receiver Only one row, showing statistics about the WAL
receiver from that receiver’s connected server.

pg_stat_recovery_prefetch Only one row, showing statistics about blocks
prefetched during recovery.

pg_stat_subscription At least one row per subscription, showing
information about the subscription workers.

12

pg_stat_ssl One row per connection (regular and replication),
showing information about SSL used on this
connection.

pg_stat_gssapi One row per connection (regular and replication),
showing information about GSSAPI authentication
and encryption used on this connection.

pg_stat_progress_analyze One row for each backend (including autovacuum
worker processes) running ANALYZE, showing current
progress.

pg_stat_progress_create_index One row for each backend running CREATE INDEX or
REINDEX, showing current progress.

pg_stat_progress_vacuum One row for each backend (including autovacuum
worker processes) running VACUUM, showing current
progress.

pg_stat_progress_cluster One row for each backend running CLUSTER or VACUUM
FULL, showing current progress.

pg_stat_progress_basebackup One row for each WAL sender process streaming a
base backup, showing current progress.

pg_stat_progress_copy One row for each backend running COPY, showing
current progress.

Collected Statistics Views

View Name Description
pg_stat_archiver One row only, showing statistics about the WAL

archiver process’s activity. See pg_stat_archiver
for details.

pg_stat_bgwriter One row only, showing statistics about the
background writer process’s activity. See
pg_stat_bgwriter for details.

pg_stat_wal One row only, showing statistics about WAL activity.
See pg_stat_wal for details.

pg_stat_database One row per database, showing database-wide
statistics. See pg_stat_database for details.

pg_stat_database_conflicts One row per database, showing database-wide
statistics about query cancels due to conflict with
recovery on standby servers. See
pg_stat_database_conflicts for details.

pg_stat_all_tables One row for each table in the current database,
showing statistics about accesses to that specific
table. See pg_stat_all_tables for details.

pg_stat_sys_tables Same as pg_stat_all_tables, except that only
system tables are shown.

pg_stat_user_tables Same as pg_stat_all_tables, except that only user
tables are shown.

pg_stat_xact_all_tables Similar to pg_stat_all_tables, but counts actions
taken so far within the current transaction (which are
not yet included in pg_stat_all_tables and related
views). The columns for numbers of live and dead
rows and vacuum and analyze actions are not
present in this view.

pg_stat_xact_sys_tables Same as pg_stat_xact_all_tables, except that only
system tables are shown.

13

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ARCHIVER-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-BGWRITER-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-WAL-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-DATABASE-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-DATABASE-CONFLICTS-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ALL-TABLES-VIEW

pg_stat_xact_user_tables Same as pg_stat_xact_all_tables, except that only
user tables are shown.

pg_stat_all_indexes One row for each index in the current database,
showing statistics about accesses to that specific
index. See pg_stat_all_indexes for details.

pg_stat_sys_indexes Same as pg_stat_all_indexes, except that only
indexes on system tables are shown.

pg_stat_user_indexes Same as pg_stat_all_indexes, except that only
indexes on user tables are shown.

pg_statio_all_tables One row for each table in the current database,
showing statistics about I/O on that specific table.
See pg_statio_all_tables for details.

pg_statio_sys_tables Same as pg_statio_all_tables, except that only
system tables are shown.

pg_statio_user_tables Same as pg_statio_all_tables, except that only
user tables are shown.

pg_statio_all_indexes One row for each index in the current database,
showing statistics about I/O on that specific index.
See pg_statio_all_indexes for details.

pg_statio_sys_indexes Same as pg_statio_all_indexes, except that only
indexes on system tables are shown.

pg_statio_user_indexes Same as pg_statio_all_indexes, except that only
indexes on user tables are shown.

pg_statio_all_sequences One row for each sequence in the current database,
showing statistics about I/O on that specific
sequence. See pg_statio_all_sequences for details.

pg_statio_sys_sequences Same as pg_statio_all_sequences, except that only
system sequences are shown. (Presently, no system
sequences are defined, so this view is always empty.)

pg_statio_user_sequences Same as pg_statio_all_sequences, except that only
user sequences are shown.

pg_stat_user_functions One row for each tracked function, showing statistics
about executions of that function. See
pg_stat_user_functions for details.

pg_stat_xact_user_functions Similar to pg_stat_user_functions, but counts only
calls during the current transaction (which are not
yet included in pg_stat_user_functions).

pg_stat_slru One row per SLRU, showing statistics of operations.
See pg_stat_slru for details.

pg_stat_replication_slots One row per replication slot, showing statistics about
the replication slot’s usage. See
pg_stat_replication_slots for details.

pg_stat_subscription_stats One row per subscription, showing statistics about
errors. See pg_stat_subscription_stats for details.

The per-index statistics are particularly useful to determine which indexes are being used and how effective
they are.

The pg_statio_ views are primarily useful to determine the effectiveness of the buffer cache. When the
number of actual disk reads is much smaller than the number of buffer hits, then the cache is satisfying most
read requests without invoking a kernel call. However, these statistics do not give the entire story: due to the
way in which IvorySQL handles disk I/O, data that is not in the IvorySQL buffer cache might still reside in the
kernel’s I/O cache, and might therefore still be fetched without requiring a physical read. Users interested
in obtaining more detailed information on IvorySQL I/O behavior are advised to use the IvorySQL statistics

14

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ALL-INDEXES-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STATIO-ALL-TABLES-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STATIO-ALL-INDEXES-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STATIO-ALL-SEQUENCES-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-USER-FUNCTIONS-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-SLRU-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-REPLICATION-SLOTS-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-SUBSCRIPTION-STATS

views in combination with operating system utilities that allow insight into the kernel’s handling of I/O.

pg_stat_activity

The pg_stat_activity view will have one row per server process, showing information related to the current
activity of that process.

pg_stat_activity View

Column TypeDescription
datid `oid`OID of the database this backend is connected to
datname `name`Name of the database this backend is connected to
pid `integer`Process ID of this backend
leader_pid integer`Process ID of the parallel group leader, if this process is a parallel
query worker. `NULL if this process is a parallel group leader or does not participate in parallel query.
usesysid `oid`OID of the user logged into this backend
usename `name`Name of the user logged into this backend
application_name `text`Name of the application that is connected to this backend
client_addr `inet`IP address of the client connected to this backend. If this field is null, it indicates either
that the client is connected via a Unix socket on the server machine or that this is an internal process such
as autovacuum.
client_hostname text`Host name of the connected client, as reported by a reverse DNS lookup of
`client_addr. This field will only be non-null for IP connections, and only when log_hostname is enabled.
client_port integer`TCP port number that the client is using for communication with this
backend, or `-1 if a Unix socket is used. If this field is null, it indicates that this is an internal server process.
backend_start `timestamp with time zone`Time when this process was started. For client backends, this is
the time the client connected to the server.
xact_start timestamp with time zone`Time when this process' current transaction was started,
or null if no transaction is active. If the current query is the first of its transaction,
this column is equal to the `query_start column.
query_start timestamp with time zone`Time when the currently active query was started, or if
`state is not active, when the last query was started
state_change timestamp with time zone`Time when the `state was last changed
wait_event_type `text`The type of event for which the backend is waiting, if any; otherwise NULL.
wait_event `text`Wait event name if backend is currently waiting, otherwise NULL.
state text`Current overall state of this backend. Possible values are:`active: The backend is
executing a query.idle: The backend is waiting for a new client command.idle in transaction: The
backend is in a transaction, but is not currently executing a query.idle in transaction (aborted): This
state is similar to idle in transaction, except one of the statements in the transaction caused an
error.fastpath function call: The backend is executing a fast-path function.disabled: This state is
reported if track_activities is disabled in this backend.
backend_xid `xid`Top-level transaction identifier of this backend, if any.
backend_xmin xid`The current backend’s `xmin horizon.
query_id bigint`Identifier of this backend’s most recent query. If `state is active this field
shows the identifier of the currently executing query. In all other states, it shows the identifier of last query
that was executed. Query identifiers are not computed by default so this field will be null unless
compute_query_id parameter is enabled or a third-party module that computes query identifiers is
configured.
query text`Text of this backend’s most recent query. If `state is active this field shows the
currently executing query. In all other states, it shows the last query that was executed. By default the query
text is truncated at 1024 bytes; this value can be changed via the parameter track_activity_query_size.

15

https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-HOSTNAME
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-ACTIVITIES
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-COMPUTE-QUERY-ID
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-ACTIVITY-QUERY-SIZE

backend_type text`Type of current backend. Possible types are `autovacuum launcher, autovacuum
worker, logical replication launcher, logical replication worker, parallel worker, background
writer, client backend, checkpointer, archiver, startup, walreceiver, walsender and walwriter. In
addition, background workers registered by extensions may have additional types.

Note
The wait_event and state columns are independent. If a backend is in the active state, it may or may
not be waiting on some event. If the state is active and wait_event is non-null, it means that a query
is being executed, but is being blocked somewhere in the system.

Wait Event Types

Wait Event Type Description
Activity The server process is idle. This event type indicates a

process waiting for activity in its main processing
loop. wait_event will identify the specific wait point

BufferPin The server process is waiting for exclusive access to a
data buffer. Buffer pin waits can be protracted if
another process holds an open cursor that last read
data from the buffer in question.

Client The server process is waiting for activity on a socket
connected to a user application. Thus, the server
expects something to happen that is independent of
its internal processes. wait_event will identify the
specific wait point.

Extension The server process is waiting for some condition
defined by an extension module.

IO The server process is waiting for an I/O operation to
complete. wait_event will identify the specific wait
point.

IPC The server process is waiting for some interaction
with another server process. wait_event will identify
the specific wait point.

Lock The server process is waiting for a heavyweight lock.
Heavyweight locks, also known as lock manager
locks or simply locks, primarily protect SQL-visible
objects such as tables. However, they are also used
to ensure mutual exclusion for certain internal
operations such as relation extension. wait_event
will identify the type of lock awaited.

LWLock The server process is waiting for a lightweight lock.
Most such locks protect a particular data structure in
shared memory. wait_event will contain a name
identifying the purpose of the lightweight lock.
(Some locks have specific names; others are part of a
group of locks each with a similar purpose.) .

Timeout The server process is waiting for a timeout to expire.
wait_event will identify the specific wait point.

Wait Events of Type Activity

Activity Wait Event Description
ArchiverMain Waiting in main loop of archiver process.

16

AutoVacuumMain Waiting in main loop of autovacuum launcher
process.

BgWriterHibernate Waiting in background writer process, hibernating.
BgWriterMain Waiting in main loop of background writer process.
CheckpointerMain Waiting in main loop of checkpointer process.
LogicalApplyMain Waiting in main loop of logical replication apply

process.
LogicalLauncherMain Waiting in main loop of logical replication launcher

process.
RecoveryWalStream Waiting in main loop of startup process for WAL to

arrive, during streaming recovery.
SysLoggerMain Waiting in main loop of syslogger process.
WalReceiverMain Waiting in main loop of WAL receiver process.
WalSenderMain Waiting in main loop of WAL sender process.
WalWriterMain Waiting in main loop of WAL writer process.

Wait Events of Type BufferPin

BufferPin Wait Event Description
BufferPin Waiting to acquire an exclusive pin on a buffer.

Wait Events of Type Client

Client Wait Event Description
ClientRead Waiting to read data from the client.
ClientWrite Waiting to write data to the client.
GSSOpenServer Waiting to read data from the client while

establishing a GSSAPI session.
LibPQWalReceiverConnect Waiting in WAL receiver to establish connection to

remote server.
LibPQWalReceiverReceive Waiting in WAL receiver to receive data from remote

server.
SSLOpenServer Waiting for SSL while attempting connection.
WalSenderWaitForWAL Waiting for WAL to be flushed in WAL sender process.
WalSenderWriteData Waiting for any activity when processing replies from

WAL receiver in WAL sender process.

Wait Events of Type Extension

Extension Wait Event Description
Extension Waiting in an extension.

Wait Events of Type IO

IO Wait Event Description
BaseBackupRead Waiting for base backup to read from a file.
BufFileRead Waiting for a read from a buffered file.
BufFileWrite Waiting for a write to a buffered file.
BufFileTruncate Waiting for a buffered file to be truncated.
ControlFileRead Waiting for a read from the pg_control file.

17

ControlFileSync Waiting for the pg_control file to reach durable
storage.

ControlFileSyncUpdate Waiting for an update to the pg_control file to reach
durable storage.

ControlFileWrite Waiting for a write to the pg_control file.
ControlFileWriteUpdate Waiting for a write to update the pg_control file.
CopyFileRead Waiting for a read during a file copy operation.
CopyFileWrite Waiting for a write during a file copy operation.
DSMFillZeroWrite Waiting to fill a dynamic shared memory backing file

with zeroes.
DataFileExtend Waiting for a relation data file to be extended.
DataFileFlush Waiting for a relation data file to reach durable

storage.
DataFileImmediateSync Waiting for an immediate synchronization of a

relation data file to durable storage.
DataFilePrefetch Waiting for an asynchronous prefetch from a relation

data file.
DataFileRead Waiting for a read from a relation data file.
DataFileSync Waiting for changes to a relation data file to reach

durable storage.
DataFileTruncate Waiting for a relation data file to be truncated.
DataFileWrite Waiting for a write to a relation data file.
LockFileAddToDataDirRead Waiting for a read while adding a line to the data

directory lock file.
LockFileAddToDataDirSync Waiting for data to reach durable storage while

adding a line to the data directory lock file.
LockFileAddToDataDirWrite Waiting for a write while adding a line to the data

directory lock file.
LockFileCreateRead Waiting to read while creating the data directory lock

file.
LockFileCreateSync Waiting for data to reach durable storage while

creating the data directory lock file.
LockFileCreateWrite Waiting for a write while creating the data directory

lock file.
LockFileReCheckDataDirRead Waiting for a read during recheck of the data

directory lock file.
LogicalRewriteCheckpointSync Waiting for logical rewrite mappings to reach durable

storage during a checkpoint.
LogicalRewriteMappingSync Waiting for mapping data to reach durable storage

during a logical rewrite.
LogicalRewriteMappingWrite Waiting for a write of mapping data during a logical

rewrite.
LogicalRewriteSync Waiting for logical rewrite mappings to reach durable

storage.
LogicalRewriteTruncate Waiting for truncate of mapping data during a logical

rewrite.
LogicalRewriteWrite Waiting for a write of logical rewrite mappings.
RelationMapRead Waiting for a read of the relation map file.

18

RelationMapSync Waiting for the relation map file to reach durable
storage.

RelationMapWrite Waiting for a write to the relation map file.
ReorderBufferRead Waiting for a read during reorder buffer

management.
ReorderBufferWrite Waiting for a write during reorder buffer

management.
ReorderLogicalMappingRead Waiting for a read of a logical mapping during

reorder buffer management.
ReplicationSlotRead Waiting for a read from a replication slot control file.
ReplicationSlotRestoreSync Waiting for a replication slot control file to reach

durable storage while restoring it to memory.
ReplicationSlotSync Waiting for a replication slot control file to reach

durable storage.
ReplicationSlotWrite Waiting for a write to a replication slot control file.
SLRUFlushSync Waiting for SLRU data to reach durable storage

during a checkpoint or database shutdown.
SLRURead Waiting for a read of an SLRU page.
SLRUSync Waiting for SLRU data to reach durable storage

following a page write.
SLRUWrite Waiting for a write of an SLRU page.
SnapbuildRead Waiting for a read of a serialized historical catalog

snapshot.
SnapbuildSync Waiting for a serialized historical catalog snapshot to

reach durable storage.
SnapbuildWrite Waiting for a write of a serialized historical catalog

snapshot.
TimelineHistoryFileSync Waiting for a timeline history file received via

streaming replication to reach durable storage.
TimelineHistoryFileWrite Waiting for a write of a timeline history file received

via streaming replication.
TimelineHistoryRead Waiting for a read of a timeline history file.
TimelineHistorySync Waiting for a newly created timeline history file to

reach durable storage.
TimelineHistoryWrite Waiting for a write of a newly created timeline history

file.
TwophaseFileRead Waiting for a read of a two phase state file.
TwophaseFileSync Waiting for a two phase state file to reach durable

storage.
TwophaseFileWrite Waiting for a write of a two phase state file.
VersionFileWrite Waiting for the version file to be written while

creating a database.
WALBootstrapSync Waiting for WAL to reach durable storage during

bootstrapping.
WALBootstrapWrite Waiting for a write of a WAL page during

bootstrapping.
WALCopyRead Waiting for a read when creating a new WAL segment

by copying an existing one.

19

WALCopySync Waiting for a new WAL segment created by copying
an existing one to reach durable storage.

WALCopyWrite Waiting for a write when creating a new WAL
segment by copying an existing one.

WALInitSync Waiting for a newly initialized WAL file to reach
durable storage.

WALInitWrite Waiting for a write while initializing a new WAL file.
WALRead Waiting for a read from a WAL file.
WALSenderTimelineHistoryRead Waiting for a read from a timeline history file during a

walsender timeline command.
WALSync Waiting for a WAL file to reach durable storage.
WALSyncMethodAssign Waiting for data to reach durable storage while

assigning a new WAL sync method.
WALWrite Waiting for a write to a WAL file.

Wait Events of Type IPC

IPC Wait Event Description
AppendReady Waiting for subplan nodes of an Append plan node to

be ready.
ArchiveCleanupCommand Waiting for archive_cleanup_command to complete.
ArchiveCommand Waiting for archive_command to complete.
BackendTermination Waiting for the termination of another backend.
BackupWaitWalArchive Waiting for WAL files required for a backup to be

successfully archived.
BgWorkerShutdown Waiting for background worker to shut down.
BgWorkerStartup Waiting for background worker to start up.
BtreePage Waiting for the page number needed to continue a

parallel B-tree scan to become available.
BufferIO Waiting for buffer I/O to complete.
CheckpointDone Waiting for a checkpoint to complete.
CheckpointStart Waiting for a checkpoint to start.
ExecuteGather Waiting for activity from a child process while

executing a Gather plan node.
HashBatchAllocate Waiting for an elected Parallel Hash participant to

allocate a hash table.
HashBatchElect Waiting to elect a Parallel Hash participant to

allocate a hash table.
HashBatchLoad Waiting for other Parallel Hash participants to finish

loading a hash table.
HashBuildAllocate Waiting for an elected Parallel Hash participant to

allocate the initial hash table.
HashBuildElect Waiting to elect a Parallel Hash participant to

allocate the initial hash table.
HashBuildHashInner Waiting for other Parallel Hash participants to finish

hashing the inner relation.
HashBuildHashOuter Waiting for other Parallel Hash participants to finish

partitioning the outer relation.

20

https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-CLEANUP-COMMAND
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-COMMAND

HashGrowBatchesAllocate Waiting for an elected Parallel Hash participant to
allocate more batches.

HashGrowBatchesDecide Waiting to elect a Parallel Hash participant to decide
on future batch growth.

HashGrowBatchesElect Waiting to elect a Parallel Hash participant to
allocate more batches.

HashGrowBatchesFinish Waiting for an elected Parallel Hash participant to
decide on future batch growth.

HashGrowBatchesRepartition Waiting for other Parallel Hash participants to finish
repartitioning.

HashGrowBucketsAllocate Waiting for an elected Parallel Hash participant to
finish allocating more buckets.

HashGrowBucketsElect Waiting to elect a Parallel Hash participant to
allocate more buckets.

HashGrowBucketsReinsert Waiting for other Parallel Hash participants to finish
inserting tuples into new buckets.

LogicalSyncData Waiting for a logical replication remote server to
send data for initial table synchronization.

LogicalSyncStateChange Waiting for a logical replication remote server to
change state.

MessageQueueInternal Waiting for another process to be attached to a
shared message queue.

MessageQueuePutMessage Waiting to write a protocol message to a shared
message queue.

MessageQueueReceive Waiting to receive bytes from a shared message
queue.

MessageQueueSend Waiting to send bytes to a shared message queue.
ParallelBitmapScan Waiting for parallel bitmap scan to become

initialized.
ParallelCreateIndexScan Waiting for parallel CREATE INDEX workers to finish

heap scan.
ParallelFinish Waiting for parallel workers to finish computing.
ProcArrayGroupUpdate Waiting for the group leader to clear the transaction

ID at end of a parallel operation.
ProcSignalBarrier Waiting for a barrier event to be processed by all

backends.
Promote Waiting for standby promotion.
RecoveryConflictSnapshot Waiting for recovery conflict resolution for a vacuum

cleanup.
RecoveryConflictTablespace Waiting for recovery conflict resolution for dropping

a tablespace.
RecoveryEndCommand Waiting for recovery_end_command to complete.
RecoveryPause Waiting for recovery to be resumed.
ReplicationOriginDrop Waiting for a replication origin to become inactive so

it can be dropped.
ReplicationSlotDrop Waiting for a replication slot to become inactive so it

can be dropped.
RestoreCommand Waiting for restore_command to complete.

21

https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-RECOVERY-END-COMMAND
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-RESTORE-COMMAND

SafeSnapshot Waiting to obtain a valid snapshot for a READ ONLY
DEFERRABLE transaction.

SyncRep Waiting for confirmation from a remote server during
synchronous replication.

WalReceiverExit Waiting for the WAL receiver to exit.
WalReceiverWaitStart Waiting for startup process to send initial data for

streaming replication.
XactGroupUpdate Waiting for the group leader to update transaction

status at end of a parallel operation.

Wait Events of Type Lock

Lock Wait Event Description
advisory Waiting to acquire an advisory user lock.
extend Waiting to extend a relation.
frozenid Waiting to update pg_database.datfrozenxid and

pg_database.datminmxid.
object Waiting to acquire a lock on a non-relation database

object.
page Waiting to acquire a lock on a page of a relation.
relation Waiting to acquire a lock on a relation.
spectoken Waiting to acquire a speculative insertion lock.
transactionid Waiting for a transaction to finish.
tuple Waiting to acquire a lock on a tuple.
userlock Waiting to acquire a user lock.
virtualxid Waiting to acquire a virtual transaction ID lock.

Wait Events of Type LWLock

LWLock Wait Event Description
AddinShmemInit Waiting to manage an extension’s space allocation

in shared memory.
AutoFile Waiting to update the postgresql.auto.conf file.
Autovacuum Waiting to read or update the current state of

autovacuum workers.
AutovacuumSchedule Waiting to ensure that a table selected for

autovacuum still needs vacuuming.
BackgroundWorker Waiting to read or update background worker state.
BtreeVacuum Waiting to read or update vacuum-related

information for a B-tree index.
BufferContent Waiting to access a data page in memory.
BufferMapping Waiting to associate a data block with a buffer in the

buffer pool.
CheckpointerComm Waiting to manage fsync requests.
CommitTs Waiting to read or update the last value set for a

transaction commit timestamp.
CommitTsBuffer Waiting for I/O on a commit timestamp SLRU buffer.
CommitTsSLRU Waiting to access the commit timestamp SLRU

cache.

22

ControlFile Waiting to read or update the pg_control file or
create a new WAL file.

DynamicSharedMemoryControl Waiting to read or update dynamic shared memory
allocation information.

LockFastPath Waiting to read or update a process' fast-path lock
information.

LockManager Waiting to read or update information about
“heavyweight” locks.

LogicalRepWorker Waiting to read or update the state of logical
replication workers.

MultiXactGen Waiting to read or update shared multixact state.
MultiXactMemberBuffer Waiting for I/O on a multixact member SLRU buffer.
MultiXactMemberSLRU Waiting to access the multixact member SLRU cache.
MultiXactOffsetBuffer Waiting for I/O on a multixact offset SLRU buffer.
MultiXactOffsetSLRU Waiting to access the multixact offset SLRU cache.
MultiXactTruncation Waiting to read or truncate multixact information.
NotifyBuffer Waiting for I/O on a NOTIFY message SLRU buffer.
NotifyQueue Waiting to read or update NOTIFY messages.
NotifyQueueTail Waiting to update limit on NOTIFY message storage.
NotifySLRU Waiting to access the NOTIFY message SLRU cache.
OidGen Waiting to allocate a new OID.
OldSnapshotTimeMap Waiting to read or update old snapshot control

information.
ParallelAppend Waiting to choose the next subplan during Parallel

Append plan execution.
ParallelHashJoin Waiting to synchronize workers during Parallel Hash

Join plan execution.
ParallelQueryDSA Waiting for parallel query dynamic shared memory

allocation.
PerSessionDSA Waiting for parallel query dynamic shared memory

allocation.
PerSessionRecordType Waiting to access a parallel query’s information

about composite types.
PerSessionRecordTypmod Waiting to access a parallel query’s information

about type modifiers that identify anonymous record
types.

PerXactPredicateList Waiting to access the list of predicate locks held by
the current serializable transaction during a parallel
query.

PredicateLockManager Waiting to access predicate lock information used by
serializable transactions.

ProcArray Waiting to access the shared per-process data
structures (typically, to get a snapshot or report a
session’s transaction ID).

RelationMapping Waiting to read or update a pg_filenode.map file
(used to track the filenode assignments of certain
system catalogs).

RelCacheInit Waiting to read or update a pg_internal.init
relation cache initialization file.

23

ReplicationOrigin Waiting to create, drop or use a replication origin.
ReplicationOriginState Waiting to read or update the progress of one

replication origin.
ReplicationSlotAllocation Waiting to allocate or free a replication slot.
ReplicationSlotControl Waiting to read or update replication slot state.
ReplicationSlotIO Waiting for I/O on a replication slot.
SerialBuffer Waiting for I/O on a serializable transaction conflict

SLRU buffer.
SerializableFinishedList Waiting to access the list of finished serializable

transactions.
SerializablePredicateList Waiting to access the list of predicate locks held by

serializable transactions.
PgStatsDSA Waiting for stats dynamic shared memory allocator

access
PgStatsHash Waiting for stats shared memory hash table access
PgStatsData Waiting for shared memory stats data access
SerializableXactHash Waiting to read or update information about

serializable transactions.
SerialSLRU Waiting to access the serializable transaction conflict

SLRU cache.
SharedTidBitmap Waiting to access a shared TID bitmap during a

parallel bitmap index scan.
SharedTupleStore Waiting to access a shared tuple store during parallel

query.
ShmemIndex Waiting to find or allocate space in shared memory.
SInvalRead Waiting to retrieve messages from the shared catalog

invalidation queue.
SInvalWrite Waiting to add a message to the shared catalog

invalidation queue.
SubtransBuffer Waiting for I/O on a sub-transaction SLRU buffer.
SubtransSLRU Waiting to access the sub-transaction SLRU cache.
SyncRep Waiting to read or update information about the

state of synchronous replication.
SyncScan Waiting to select the starting location of a

synchronized table scan.
TablespaceCreate Waiting to create or drop a tablespace.
TwoPhaseState Waiting to read or update the state of prepared

transactions.
WALBufMapping Waiting to replace a page in WAL buffers.
WALInsert Waiting to insert WAL data into a memory buffer.
WALWrite Waiting for WAL buffers to be written to disk.
WrapLimitsVacuum Waiting to update limits on transaction id and

multixact consumption.
XactBuffer Waiting for I/O on a transaction status SLRU buffer.
XactSLRU Waiting to access the transaction status SLRU cache.
XactTruncation Waiting to execute pg_xact_status or update the

oldest transaction ID available to it.

24

XidGen Waiting to allocate a new transaction ID.

Note
Extensions can add LWLock types to the list shown in Table 12. In some cases, the name assigned by
an extension will not be available in all server processes; so an LWLock wait event might be reported as
just “extension” rather than the extension-assigned name.

Wait Events of Type Timeout

Timeout Wait Event Description
BaseBackupThrottle Waiting during base backup when throttling activity.
CheckpointWriteDelay Waiting between writes while performing a

checkpoint.
PgSleep Waiting due to a call to pg_sleep or a sibling

function.
RecoveryApplyDelay Waiting to apply WAL during recovery because of a

delay setting.
RecoveryRetrieveRetryInterval Waiting during recovery when WAL data is not

available from any source (pg_wal, archive or
stream).

RegisterSyncRequest Waiting while sending synchronization requests to
the checkpointer, because the request queue is full.

VacuumDelay Waiting in a cost-based vacuum delay point.
VacuumTruncate Waiting to acquire an exclusive lock to truncate off

any empty pages at the end of a table vacuumed.

Here is an example of how wait events can be viewed:

SELECT pid, wait_event_type, wait_event FROM pg_stat_activity WHERE wait_event is NOT
NULL;
 pid | wait_event_type | wait_event
------+-----------------+------------
 2540 | Lock | relation
 6644 | LWLock | ProcArray
(2 rows)

pg_stat_replication

The pg_stat_replication view will contain one row per WAL sender process, showing statistics about
replication to that sender’s connected standby server. Only directly connected standbys are listed; no
information is available about downstream standby servers.

pg_stat_replication View

Column TypeDescription
pid `integer`Process ID of a WAL sender process
usesysid `oid`OID of the user logged into this WAL sender process
usename `name`Name of the user logged into this WAL sender process
application_name `text`Name of the application that is connected to this WAL sender

25

client_addr `inet`IP address of the client connected to this WAL sender. If this field is null, it indicates that
the client is connected via a Unix socket on the server machine.
client_hostname text`Host name of the connected client, as reported by a reverse DNS lookup of
`client_addr. This field will only be non-null for IP connections, and only when log_hostname is enabled.
client_port integer`TCP port number that the client is using for communication with this WAL
sender, or `-1 if a Unix socket is used
backend_start `timestamp with time zone`Time when this process was started, i.e., when the client
connected to this WAL sender
backend_xmin xid`This standby’s `xmin horizon reported by hot_standby_feedback.
state text`Current WAL sender state. Possible values are:`startup: This WAL sender is starting
up.catchup: This WAL sender’s connected standby is catching up with the primary.streaming: This WAL
sender is streaming changes after its connected standby server has caught up with the primary.backup: This
WAL sender is sending a backup.stopping: This WAL sender is stopping.
sent_lsn `pg_lsn`Last write-ahead log location sent on this connection
write_lsn `pg_lsn`Last write-ahead log location written to disk by this standby server
flush_lsn `pg_lsn`Last write-ahead log location flushed to disk by this standby server
replay_lsn `pg_lsn`Last write-ahead log location replayed into the database on this standby server
write_lag interval`Time elapsed between flushing recent WAL locally and receiving notification
that this standby server has written it (but not yet flushed it or applied it). This can be
used to gauge the delay that `synchronous_commit level remote_write incurred while committing if this
server was configured as a synchronous standby.
flush_lag interval`Time elapsed between flushing recent WAL locally and receiving notification
that this standby server has written and flushed it (but not yet applied it). This can be used
to gauge the delay that `synchronous_commit level on incurred while committing if this server was
configured as a synchronous standby.
replay_lag interval`Time elapsed between flushing recent WAL locally and receiving
notification that this standby server has written, flushed and applied it. This can be used to
gauge the delay that `synchronous_commit level remote_apply incurred while committing if this server
was configured as a synchronous standby.
sync_priority `integer`Priority of this standby server for being chosen as the synchronous standby in a
priority-based synchronous replication. This has no effect in a quorum-based synchronous replication.
sync_state text`Synchronous state of this standby server. Possible values are:`async: This
standby server is asynchronous.potential: This standby server is now asynchronous, but can potentially
become synchronous if one of current synchronous ones fails.sync: This standby server is
synchronous.quorum: This standby server is considered as a candidate for quorum standbys.
reply_time `timestamp with time zone`Send time of last reply message received from standby server

The lag times reported in the pg_stat_replication view are measurements of the time taken for recent WAL
to be written, flushed and replayed and for the sender to know about it. These times represent the commit
delay that was (or would have been) introduced by each synchronous commit level, if the remote server was
configured as a synchronous standby. For an asynchronous standby, the replay_lag column approximates
the delay before recent transactions became visible to queries. If the standby server has entirely caught up
with the sending server and there is no more WAL activity, the most recently measured lag times will
continue to be displayed for a short time and then show NULL.

Lag times work automatically for physical replication. Logical decoding plugins may optionally emit tracking
messages; if they do not, the tracking mechanism will simply display NULL lag.

Note
The reported lag times are not predictions of how long it will take for the standby to catch up with the
sending server assuming the current rate of replay. Such a system would show similar times while new
WAL is being generated, but would differ when the sender becomes idle. In particular, when the
standby has caught up completely, pg_stat_replication shows the time taken to write, flush and

26

https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-HOSTNAME
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-HOT-STANDBY-FEEDBACK

replay the most recent reported WAL location rather than zero as some users might expect. This is
consistent with the goal of measuring synchronous commit and transaction visibility delays for recent
write transactions. To reduce confusion for users expecting a different model of lag, the lag columns
revert to NULL after a short time on a fully replayed idle system. Monitoring systems should choose
whether to represent this as missing data, zero or continue to display the last known value.

pg_stat_replication_slots

The pg_stat_replication_slots view will contain one row per logical replication slot, showing statistics
about its usage.

pg_stat_replication_slots View

Column TypeDescription
slot_name `text`A unique, cluster-wide identifier for the replication slot
spill_txns bigint`Number of transactions spilled to disk once the memory used by logical
decoding to decode changes from WAL has exceeded `logical_decoding_work_mem. The counter gets
incremented for both top-level transactions and subtransactions.
spill_count `bigint`Number of times transactions were spilled to disk while decoding changes from WAL
for this slot. This counter is incremented each time a transaction is spilled, and the same transaction may
be spilled multiple times.
spill_bytes bigint`Amount of decoded transaction data spilled to disk while performing
decoding of changes from WAL for this slot. This and other spill counters can be used to gauge
the I/O which occurred during logical decoding and allow tuning `logical_decoding_work_mem.
stream_txns bigint`Number of in-progress transactions streamed to the decoding output plugin
after the memory used by logical decoding to decode changes from WAL for this slot has
exceeded `logical_decoding_work_mem. Streaming only works with top-level transactions (subtransactions
can’t be streamed independently), so the counter is not incremented for subtransactions.
`stream_count``bigint`Number of times in-progress transactions were streamed to the decoding output
plugin while decoding changes from WAL for this slot. This counter is incremented each time a transaction
is streamed, and the same transaction may be streamed multiple times.
stream_bytes``bigint`Amount of transaction data decoded for streaming in-progress transactions
to the decoding output plugin while decoding changes from WAL for this slot. This and other
streaming counters for this slot can be used to tune `logical_decoding_work_mem.
total_txns `bigint`Number of decoded transactions sent to the decoding output plugin for this slot. This
counts top-level transactions only, and is not incremented for subtransactions. Note that this includes the
transactions that are streamed and/or spilled.
`total_bytes``bigint`Amount of transaction data decoded for sending transactions to the decoding
output plugin while decoding changes from WAL for this slot. Note that this includes data that is streamed
and/or spilled.
stats_reset `timestamp with time zone`Time at which these statistics were last reset

pg_stat_wal_receiver

The pg_stat_wal_receiver view will contain only one row, showing statistics about the WAL receiver from
that receiver’s connected server.

pg_stat_wal_receiver View

Column TypeDescription
pid `integer`Process ID of the WAL receiver process
status `text`Activity status of the WAL receiver process
receive_start_lsn `pg_lsn`First write-ahead log location used when WAL receiver is started
receive_start_tli `integer`First timeline number used when WAL receiver is started

27

written_lsn `pg_lsn`Last write-ahead log location already received and written to disk, but not flushed.
This should not be used for data integrity checks.
flushed_lsn `pg_lsn`Last write-ahead log location already received and flushed to disk, the initial value of
this field being the first log location used when WAL receiver is started
received_tli `integer`Timeline number of last write-ahead log location received and flushed to disk, the
initial value of this field being the timeline number of the first log location used when WAL receiver is started
last_msg_send_time `timestamp with time zone`Send time of last message received from origin WAL
sender
last_msg_receipt_time `timestamp with time zone`Receipt time of last message received from origin WAL
sender
latest_end_lsn `pg_lsn`Last write-ahead log location reported to origin WAL sender

latest_end_time `timestamp with time zone`Time of last write-ahead log location reported to origin WAL
sender
slot_name `text`Replication slot name used by this WAL receiver
sender_host text`Host of the IvorySQL instance this WAL receiver is connected to. This can be
a host name, an IP address, or a directory path if the connection is via Unix socket. (The
path case can be distinguished because it will always be an absolute path, beginning with `/.)
sender_port `integer`Port number of the IvorySQL instance this WAL receiver is connected to.
conninfo `text`Connection string used by this WAL receiver, with security-sensitive fields obfuscated.

pg_stat_recovery_prefetch

The pg_stat_recovery_prefetch view will contain only one row. The columns wal_distance,
block_distance and io_depth show current values, and the other columns show cumulative counters that
can be reset with the pg_stat_reset_shared function.

pg_stat_recovery_prefetch View

Column TypeDescription
stats_reset `timestamp with time zone`Time at which these statistics were last reset
prefetch `bigint`Number of blocks prefetched because they were not in the buffer pool
hit `bigint`Number of blocks not prefetched because they were already in the buffer pool
skip_init `bigint`Number of blocks not prefetched because they would be zero-initialized
skip_new `bigint`Number of blocks not prefetched because they didn’t exist yet

skip_fpw `bigint`Number of blocks not prefetched because a full page image was included in the WAL
skip_rep `bigint`Number of blocks not prefetched because they were already recently prefetched
wal_distance `int`How many bytes ahead the prefetcher is looking
block_distance `int`How many blocks ahead the prefetcher is looking
io_depth `int`How many prefetches have been initiated but are not yet known to have completed

pg_stat_subscription

pg_stat_subscription View

Column TypeDescription
subid `oid`OID of the subscription
subname `name`Name of the subscription
pid `integer`Process ID of the subscription worker process
relid `oid`OID of the relation that the worker is synchronizing; null for the main apply worker

28

received_lsn `pg_lsn`Last write-ahead log location received, the initial value of this field being 0
last_msg_send_time `timestamp with time zone`Send time of last message received from origin WAL
sender
last_msg_receipt_time `timestamp with time zone`Receipt time of last message received from origin WAL
sender
latest_end_lsn `pg_lsn`Last write-ahead log location reported to origin WAL sender
latest_end_time `timestamp with time zone`Time of last write-ahead log location reported to origin WAL
sender

pg_stat_subscription_stats

The pg_stat_subscription_stats view will contain one row per subscription.

pg_stat_subscription_stats View

Column TypeDescription
subid `oid`OID of the subscription
subname `name`Name of the subscription
apply_error_count `bigint`Number of times an error occurred while applying changes
sync_error_count `bigint`Number of times an error occurred during the initial table synchronization
stats_reset `timestamp with time zone`Time at which these statistics were last reset

pg_stat_ssl

The pg_stat_ssl view will contain one row per backend or WAL sender process, showing statistics about SSL
usage on this connection. It can be joined to pg_stat_activity or pg_stat_replication on the pid column
to get more details about the connection.

pg_stat_ssl View

Column TypeDescription
pid `integer`Process ID of a backend or WAL sender process
ssl `boolean`True if SSL is used on this connection
version `text`Version of SSL in use, or NULL if SSL is not in use on this connection
cipher `text`Name of SSL cipher in use, or NULL if SSL is not in use on this connection
bits `integer`Number of bits in the encryption algorithm used, or NULL if SSL is not used on this
connection
client_dn text`Distinguished Name (DN) field from the client certificate used, or NULL if no
client certificate was supplied or if SSL is not in use on this connection. This field is
truncated if the DN field is longer than `NAMEDATALEN (64 characters in a standard build).
client_serial `numeric`Serial number of the client certificate, or NULL if no client certificate was
supplied or if SSL is not in use on this connection. The combination of certificate serial number and
certificate issuer uniquely identifies a certificate (unless the issuer erroneously reuses serial numbers).
issuer_dn text`DN of the issuer of the client certificate, or NULL if no client certificate
was supplied or if SSL is not in use on this connection. This field is truncated like
`client_dn.

pg_stat_gssapi

The pg_stat_gssapi view will contain one row per backend, showing information about GSSAPI usage on
this connection. It can be joined to pg_stat_activity or pg_stat_replication on the pid column to get
more details about the connection.

pg_stat_gssapi View

29

Column TypeDescription
pid `integer`Process ID of a backend
gss_authenticated `boolean`True if GSSAPI authentication was used for this connection
principal text`Principal used to authenticate this connection, or NULL if GSSAPI was not used
to authenticate this connection. This field is truncated if the principal is longer than
`NAMEDATALEN (64 characters in a standard build).
encrypted `boolean`True if GSSAPI encryption is in use on this connection

pg_stat_archiver

The pg_stat_archiver view will always have a single row, containing data about the archiver process of the
cluster.

pg_stat_archiver View

archived_count `bigint`Number of WAL files that have been successfully archived
last_archived_wal `text`Name of the WAL file most recently successfully archived
last_archived_time `timestamp with time zone`Time of the most recent successful archive operation
failed_count `bigint`Number of failed attempts for archiving WAL files
last_failed_wal `text`Name of the WAL file of the most recent failed archival operation
last_failed_time `timestamp with time zone`Time of the most recent failed archival operation
stats_reset `timestamp with time zone`Time at which these statistics were last reset

Normally, WAL files are archived in order, oldest to newest, but that is not guaranteed, and does not hold
under special circumstances like when promoting a standby or after crash recovery. Therefore it is not safe
to assume that all files older than last_archived_wal have also been successfully archived.

pg_stat_bgwriter

The pg_stat_bgwriter view will always have a single row, containing global data for the cluster.

pg_stat_bgwriter View

Column TypeDescription
checkpoints_timed `bigint`Number of scheduled checkpoints that have been performed
checkpoints_req `bigint`Number of requested checkpoints that have been performed
checkpoint_write_time `double precision`Total amount of time that has been spent in the portion of
checkpoint processing where files are written to disk, in milliseconds
checkpoint_sync_time `double precision`Total amount of time that has been spent in the portion of
checkpoint processing where files are synchronized to disk, in milliseconds
buffers_checkpoint `bigint`Number of buffers written during checkpoints
buffers_clean `bigint`Number of buffers written by the background writer
maxwritten_clean `bigint`Number of times the background writer stopped a cleaning scan because it had
written too many buffers
buffers_backend `bigint`Number of buffers written directly by a backend
buffers_backend_fsync bigint`Number of times a backend had to execute its own `fsync call
(normally the background writer handles those even when the backend does its own write)
buffers_alloc `bigint`Number of buffers allocated
stats_reset `timestamp with time zone`Time at which these statistics were last reset

30

pg_stat_wal

The pg_stat_wal view will always have a single row, containing data about WAL activity of the cluster.

pg_stat_wal View

Column TypeDescription
wal_records `bigint`Total number of WAL records generated
wal_fpi `bigint`Total number of WAL full page images generated
wal_bytes `numeric`Total amount of WAL generated in bytes
wal_buffers_full `bigint`Number of times WAL data was written to disk because WAL buffers became full
wal_write bigint`Number of times WAL buffers were written out to disk via `XLogWrite request.
wal_sync bigint`Number of times WAL files were synced to disk via `issue_xlog_fsync request (if
fsync is on and wal_sync_method is either fdatasync, fsync or fsync_writethrough, otherwise zero).
wal_write_time double precision`Total amount of time spent writing WAL buffers to disk via
`XLogWrite request, in milliseconds (if track_wal_io_timing is enabled, otherwise zero). This includes the
sync time when wal_sync_method is either open_datasync or open_sync.
wal_sync_time double precision`Total amount of time spent syncing WAL files to disk via
`issue_xlog_fsync request, in milliseconds (if track_wal_io_timing is enabled, fsync is on, and
wal_sync_method is either fdatasync, fsync or fsync_writethrough, otherwise zero).
stats_reset `timestamp with time zone`Time at which these statistics were last reset

pg_stat_database

The pg_stat_database view will contain one row for each database in the cluster, plus one for shared
objects, showing database-wide statistics.

pg_stat_database View

Column TypeDescription
datid `oid`OID of this database, or 0 for objects belonging to a shared relation

datname name`Name of this database, or `NULL for shared objects.

numbackends integer`Number of backends currently connected to this database, or `NULL for shared
objects. This is the only column in this view that returns a value reflecting current state; all other columns
return the accumulated values since the last reset.

xact_commit `bigint`Number of transactions in this database that have been committed

xact_rollback `bigint`Number of transactions in this database that have been rolled back

blks_read `bigint`Number of disk blocks read in this database

blks_hit `bigint`Number of times disk blocks were found already in the buffer cache, so that a read was
not necessary (this only includes hits in the IvorySQL buffer cache, not the operating system’s file system
cache)

tup_returned `bigint`Number of live rows fetched by sequential scans and index entries returned by index
scans in this database

tup_fetched `bigint`Number of live rows fetched by index scans in this database

tup_inserted `bigint`Number of rows inserted by queries in this database

tup_updated `bigint`Number of rows updated by queries in this database

31

https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-FSYNC
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-WAL-SYNC-METHOD
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-WAL-IO-TIMING

tup_deleted `bigint`Number of rows deleted by queries in this database

conflicts bigint`Number of queries canceled due to conflicts with recovery in this database.
(Conflicts occur only on standby servers; see `pg_stat_database_conflicts for details.)

temp_files `bigint`Number of temporary files created by queries in this database. All temporary files are
counted, regardless of why the temporary file was created (e.g., sorting or hashing), and regardless of the
log_temp_files setting.

temp_bytes `bigint`Total amount of data written to temporary files by queries in this database. All
temporary files are counted, regardless of why the temporary file was created, and regardless of the
log_temp_files setting.

deadlocks `bigint`Number of deadlocks detected in this database

checksum_failures `bigint`Number of data page checksum failures detected in this database (or on a
shared object), or NULL if data checksums are not enabled.

checksum_last_failure `timestamp with time zone`Time at which the last data page checksum failure
was detected in this database (or on a shared object), or NULL if data checksums are not enabled.

blk_read_time `double precision`Time spent reading data file blocks by backends in this database, in
milliseconds (if track_io_timing is enabled, otherwise zero)

blk_write_time `double precision`Time spent writing data file blocks by backends in this database, in
milliseconds (if track_io_timing is enabled, otherwise zero)

session_time `double precision`Time spent by database sessions in this database, in milliseconds (note
that statistics are only updated when the state of a session changes, so if sessions have been idle for a long
time, this idle time won’t be included)

active_time double precision`Time spent executing SQL statements in this database, in
milliseconds (this corresponds to the states `active and fastpath function call in
pg_stat_activity)

idle_in_transaction_time double precision`Time spent idling while in a transaction in this
database, in milliseconds (this corresponds to the states `idle in transaction and idle in
transaction (aborted) in pg_stat_activity)
sessions `bigint`Total number of sessions established to this database
sessions_abandoned `bigint`Number of database sessions to this database that were terminated because
connection to the client was lost
sessions_fatal `bigint`Number of database sessions to this database that were terminated by fatal errors
sessions_killed `bigint`Number of database sessions to this database that were terminated by operator
intervention
stats_reset `timestamp with time zone`Time at which these statistics were last reset

pg_stat_database_conflicts

The pg_stat_database_conflicts view will contain one row per database, showing database-wide statistics
about query cancels occurring due to conflicts with recovery on standby servers. This view will only contain
information on standby servers, since conflicts do not occur on primary servers.

pg_stat_database_conflicts View

Column TypeDescription
datid `oid`OID of a database
datname `name`Name of this database

32

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-DATABASE-CONFLICTS-VIEW
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-TEMP-FILES
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-TEMP-FILES
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-IO-TIMING
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-IO-TIMING
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW

confl_tablespace `bigint`Number of queries in this database that have been canceled due to dropped
tablespaces
confl_lock `bigint`Number of queries in this database that have been canceled due to lock timeouts
confl_snapshot `bigint`Number of queries in this database that have been canceled due to old snapshots
confl_bufferpin `bigint`Number of queries in this database that have been canceled due to pinned
buffers
confl_deadlock `bigint`Number of queries in this database that have been canceled due to deadlocks

pg_stat_all_tables

The pg_stat_all_tables view will contain one row for each table in the current database (including TOAST
tables), showing statistics about accesses to that specific table. The pg_stat_user_tables and
pg_stat_sys_tables views contain the same information, but filtered to only show user and system tables
respectively.

pg_stat_all_tables View

Column TypeDescription
relid `oid`OID of a table
schemaname `name`Name of the schema that this table is in
relname `name`Name of this table
seq_scan `bigint`Number of sequential scans initiated on this table
seq_tup_read `bigint`Number of live rows fetched by sequential scans
idx_scan `bigint`Number of index scans initiated on this table
idx_tup_fetch `bigint`Number of live rows fetched by index scans
n_tup_ins `bigint`Number of rows inserted
n_tup_upd `bigint`Number of rows updated (includes HOT updated rows)
n_tup_del `bigint`Number of rows deleted
n_tup_hot_upd `bigint`Number of rows HOT updated (i.e., with no separate index update required)
n_live_tup `bigint`Estimated number of live rows
n_dead_tup `bigint`Estimated number of dead rows
n_mod_since_analyze `bigint`Estimated number of rows modified since this table was last analyzed
n_ins_since_vacuum `bigint`Estimated number of rows inserted since this table was last vacuumed
last_vacuum timestamp with time zone`Last time at which this table was manually vacuumed (not
counting `VACUUM FULL)
last_autovacuum `timestamp with time zone`Last time at which this table was vacuumed by the
autovacuum daemon
last_analyze `timestamp with time zone`Last time at which this table was manually analyzed
last_autoanalyze `timestamp with time zone`Last time at which this table was analyzed by the
autovacuum daemon
vacuum_count bigint`Number of times this table has been manually vacuumed (not counting
`VACUUM FULL)
autovacuum_count `bigint`Number of times this table has been vacuumed by the autovacuum daemon
analyze_count `bigint`Number of times this table has been manually analyzed
autoanalyze_count `bigint`Number of times this table has been analyzed by the autovacuum daemon

33

https://www.postgresql.org/docs/current/storage-hot.html

pg_stat_all_indexes

The pg_stat_all_indexes view will contain one row for each index in the current database, showing
statistics about accesses to that specific index. The pg_stat_user_indexes and pg_stat_sys_indexes views
contain the same information, but filtered to only show user and system indexes respectively.

pg_stat_all_indexes View

Column TypeDescription
relid `oid`OID of the table for this index
indexrelid `oid`OID of this index
schemaname `name`Name of the schema this index is in
relname `name`Name of the table for this index
indexrelname `name`Name of this index
idx_scan `bigint`Number of index scans initiated on this index
idx_tup_read `bigint`Number of index entries returned by scans on this index
idx_tup_fetch `bigint`Number of live table rows fetched by simple index scans using this index

Indexes can be used by simple index scans, “bitmap” index scans, and the optimizer. In a bitmap scan the
output of several indexes can be combined via AND or OR rules, so it is difficult to associate individual heap
row fetches with specific indexes when a bitmap scan is used. Therefore, a bitmap scan increments the
pg_stat_all_indexes.idx_tup_read count(s) for the index(es) it uses, and it increments the
pg_stat_all_tables.idx_tup_fetch count for the table, but it does not affect pg_stat_all_indexes
.idx_tup_fetch. The optimizer also accesses indexes to check for supplied constants whose values are
outside the recorded range of the optimizer statistics because the optimizer statistics might be stale.

Note
The idx_tup_read and idx_tup_fetch counts can be different even without any use of bitmap scans,
because idx_tup_read counts index entries retrieved from the index while idx_tup_fetch counts live
rows fetched from the table. The latter will be less if any dead or not-yet-committed rows are fetched
using the index, or if any heap fetches are avoided by means of an index-only scan.

pg_statio_all_tables

The pg_statio_all_tables view will contain one row for each table in the current database (including
TOAST tables), showing statistics about I/O on that specific table. The pg_statio_user_tables and
pg_statio_sys_tables views contain the same information, but filtered to only show user and system tables
respectively.

pg_statio_all_tables View

Column TypeDescription
relid `oid`OID of a table
schemaname `name`Name of the schema that this table is in
relname `name`Name of this table
heap_blks_read `bigint`Number of disk blocks read from this table
heap_blks_hit `bigint`Number of buffer hits in this table
idx_blks_read `bigint`Number of disk blocks read from all indexes on this table
idx_blks_hit `bigint`Number of buffer hits in all indexes on this table
toast_blks_read `bigint`Number of disk blocks read from this table’s TOAST table (if any)
toast_blks_hit `bigint`Number of buffer hits in this table’s TOAST table (if any)

34

tidx_blks_read `bigint`Number of disk blocks read from this table’s TOAST table indexes (if any)
tidx_blks_hit `bigint`Number of buffer hits in this table’s TOAST table indexes (if any)

pg_statio_all_indexes

The pg_statio_all_indexes view will contain one row for each index in the current database, showing
statistics about I/O on that specific index. The pg_statio_user_indexes and pg_statio_sys_indexes views
contain the same information, but filtered to only show user and system indexes respectively.

pg_statio_all_indexes View

Column TypeDescription
relid `oid`OID of the table for this index
indexrelid `oid`OID of this index
schemaname `name`Name of the schema this index is in
relname `name`Name of the table for this index
indexrelname `name`Name of this index
idx_blks_read `bigint`Number of disk blocks read from this index
idx_blks_hit `bigint`Number of buffer hits in this index

pg_statio_all_sequences

The pg_statio_all_sequences view will contain one row for each sequence in the current database,
showing statistics about I/O on that specific sequence.

pg_statio_all_sequences View

Column TypeDescription
relid `oid`OID of a sequence
schemaname `name`Name of the schema this sequence is in
relname `name`Name of this sequence
blks_read `bigint`Number of disk blocks read from this sequence
blks_hit `bigint`Number of buffer hits in this sequence

pg_stat_user_functions

The pg_stat_user_functions view will contain one row for each tracked function, showing statistics about
executions of that function. The track_functions parameter controls exactly which functions are tracked.

pg_stat_user_functions View

Column TypeDescription
funcid `oid`OID of a function
schemaname `name`Name of the schema this function is in
funcname `name`Name of this function
calls `bigint`Number of times this function has been called
total_time `double precision`Total time spent in this function and all other functions called by it, in
milliseconds
self_time `double precision`Total time spent in this function itself, not including other functions called by
it, in milliseconds

35

https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-FUNCTIONS

pg_stat_slru

IvorySQL accesses certain on-disk information via SLRU (simple least-recently-used) caches. The
pg_stat_slru view will contain one row for each tracked SLRU cache, showing statistics about access to
cached pages.

pg_stat_slru View

Column TypeDescription
name `text`Name of the SLRU
blks_zeroed `bigint`Number of blocks zeroed during initializations
blks_hit `bigint`Number of times disk blocks were found already in the SLRU, so that a read was not
necessary (this only includes hits in the SLRU, not the operating system’s file system cache)
blks_read `bigint`Number of disk blocks read for this SLRU
blks_written `bigint`Number of disk blocks written for this SLRU
blks_exists `bigint`Number of blocks checked for existence for this SLRU
flushes `bigint`Number of flushes of dirty data for this SLRU
truncates `bigint`Number of truncates for this SLRU
stats_reset `timestamp with time zone`Time at which these statistics were last reset

Statistics Functions

Other ways of looking at the statistics can be set up by writing queries that use the same underlying statistics
access functions used by the standard views shown above. For details such as the functions' names, consult
the definitions of the standard views. (For example, in psql you could issue \d+ pg_stat_activity.) The
access functions for per-database statistics take a database OID as an argument to identify which database
to report on. The per-table and per-index functions take a table or index OID. The functions for per-function
statistics take a function OID. Note that only tables, indexes, and functions in the current database can be
seen with these functions.

Additional Statistics Functions

FunctionDescription
pg_backend_pid () → `integer`Returns the process ID of the server process attached to the current session.
pg_stat_get_activity (integer) → setof record`Returns a record of information about the
backend with the specified process ID, or one record for each active backend in the system if
`NULL is specified. The fields returned are a subset of those in the pg_stat_activity view.
pg_stat_get_snapshot_timestamp () → timestamp with time zone`Returns the timestamp of the
current statistics snapshot, or NULL if no statistics snapshot has been taken. A snapshot is
taken the first time cumulative statistics are accessed in a transaction if
`stats_fetch_consistency is set to snapshot
pg_stat_clear_snapshot () → `void`Discards the current statistics snapshot or cached information.
pg_stat_reset () → `void`Resets all statistics counters for the current database to zero.This function is
restricted to superusers by default, but other users can be granted EXECUTE to run the function.
pg_stat_reset_shared (text) → void`Resets some cluster-wide statistics counters to zero,
depending on the argument. The argument can be `bgwriter to reset all the counters shown in the
pg_stat_bgwriter view, archiver to reset all the counters shown in the pg_stat_archiver view, wal to reset
all the counters shown in the pg_stat_wal view or recovery_prefetch to reset all the counters shown in the
pg_stat_recovery_prefetch view.This function is restricted to superusers by default, but other users can be
granted EXECUTE to run the function.
pg_stat_reset_single_table_counters (oid) → `void`Resets statistics for a single table or index in the
current database or shared across all databases in the cluster to zero.This function is restricted to
superusers by default, but other users can be granted EXECUTE to run the function.

36

pg_stat_reset_single_function_counters (oid) → `void`Resets statistics for a single function in the
current database to zero.This function is restricted to superusers by default, but other users can be granted
EXECUTE to run the function.
pg_stat_reset_slru (text) → void`Resets statistics to zero for a single SLRU cache, or for all
SLRUs in the cluster. If the argument is NULL, all counters shown in the `pg_stat_slru view for
all SLRU caches are reset. The argument can be one of CommitTs, MultiXactMember, MultiXactOffset,
Notify, Serial, Subtrans, or Xact to reset the counters for only that entry. If the argument is other (or
indeed, any unrecognized name), then the counters for all other SLRU caches, such as extension-defined
caches, are reset.This function is restricted to superusers by default, but other users can be granted
EXECUTE to run the function.
pg_stat_reset_replication_slot (text) → void`Resets statistics of the replication slot defined
by the argument. If the argument is `NULL, resets statistics for all the replication slots.This function is
restricted to superusers by default, but other users can be granted EXECUTE to run the function.
pg_stat_reset_subscription_stats (oid) → void`Resets statistics for a single subscription
shown in the `pg_stat_subscription_stats view to zero. If the argument is NULL, reset statistics for all
subscriptions.This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

Warning
Using pg_stat_reset() also resets counters that autovacuum uses to determine when to trigger a
vacuum or an analyze. Resetting these counters can cause autovacuum to not perform necessary
work, which can cause problems such as table bloat or out-dated table statistics. A database-wide
ANALYZE is recommended after the statistics have been reset.

pg_stat_get_activity, the underlying function of the pg_stat_activity view, returns a set of records
containing all the available information about each backend process. Sometimes it may be more convenient
to obtain just a subset of this information. In such cases, an older set of per-backend statistics access
functions can be used; These access functions use a backend ID number, which ranges from one to the
number of currently active backends. The function pg_stat_get_backend_idset provides a convenient way
to generate one row for each active backend for invoking these functions. For example, to show the PIDs and
current queries of all backends:

SELECT pg_stat_get_backend_pid(s.backendid) AS pid,
 pg_stat_get_backend_activity(s.backendid) AS query
 FROM (SELECT pg_stat_get_backend_idset() AS backendid) AS s;

Per-Backend Statistics Functions

FunctionDescription
pg_stat_get_backend_idset () → `setof integer`Returns the set of currently active backend ID numbers
(from 1 to the number of active backends).
pg_stat_get_backend_activity (integer) → `text`Returns the text of this backend’s most recent query.
pg_stat_get_backend_activity_start (integer) → `timestamp with time zone`Returns the time when
the backend’s most recent query was started.
pg_stat_get_backend_client_addr (integer) → `inet`Returns the IP address of the client connected to
this backend.
pg_stat_get_backend_client_port (integer) → `integer`Returns the TCP port number that the client is
using for communication.
pg_stat_get_backend_dbid (integer) → `oid`Returns the OID of the database this backend is connected
to.
pg_stat_get_backend_pid (integer) → `integer`Returns the process ID of this backend.

37

pg_stat_get_backend_start (integer) → `timestamp with time zone`Returns the time when this process
was started.
pg_stat_get_backend_userid (integer) → `oid`Returns the OID of the user logged into this backend.
pg_stat_get_backend_wait_event_type (integer) → `text`Returns the wait event type name if this
backend is currently waiting, otherwise NULL.
pg_stat_get_backend_wait_event (integer) → `text`Returns the wait event name if this backend is
currently waiting, otherwise NULL.
pg_stat_get_backend_xact_start (integer) → `timestamp with time zone`Returns the time when the
backend’s current transaction was started.

View Locks

• Another useful tool for monitoring database activity is the pg_locks system table. It allows the database
administrator to view information about the outstanding locks in the lock manager. For example, this
capability can be used to:
◦ View all the locks currently outstanding, all the locks on relations in a particular database, all the

locks on a particular relation, or all the locks held by a particular IvorySQL session.
◦ Determine the relation in the current database with the most ungranted locks (which might be a

source of contention among database clients).
◦ Determine the effect of lock contention on overall database performance, as well as the extent to

which contention varies with overall database traffic.

Progress Reporting

IvorySQL has the ability to report the progress of certain commands during command execution. Currently,
the only commands which support progress reporting are ANALYZE, CLUSTER, CREATE INDEX, VACUUM, COPY, and
BASE_BACKUP (i.e., replication command that pg_basebackup issues to take a base backup). This may be
expanded in the future.

ANALYZE Progress Reporting

Whenever ANALYZE is running, the pg_stat_progress_analyze view will contain a row for each backend that
is currently running that command. The tables below describe the information that will be reported and
provide information about how to interpret it.

pg_stat_progress_analyze View

Column TypeDescription
pid `integer`Process ID of backend.
datid `oid`OID of the database to which this backend is connected.
datname `name`Name of the database to which this backend is connected.
relid `oid`OID of the table being analyzed.
phase `text`Current processing phase. See Table 1.37.
sample_blks_total `bigint`Total number of heap blocks that will be sampled.
sample_blks_scanned `bigint`Number of heap blocks scanned.
ext_stats_total `bigint`Number of extended statistics.
ext_stats_computed bigint`Number of extended statistics computed. This counter only advances
when the phase is `computing extended statistics.
child_tables_total `bigint`Number of child tables.
child_tables_done bigint`Number of child tables scanned. This counter only advances when the
phase is `acquiring inherited sample rows.

38

https://www.postgresql.org/docs/current/protocol-replication.html#PROTOCOL-REPLICATION-BASE-BACKUP
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/progress-reporting.html#ANALYZE-PHASES

current_child_table_relid oid`OID of the child table currently being scanned. This field is
only valid when the phase is `acquiring inherited sample rows.

ANALYZE Phases

Phase Description
initializing The command is preparing to begin scanning the

heap. This phase is expected to be very brief.
acquiring sample rows The command is currently scanning the table given

by relid to obtain sample rows.
acquiring inherited sample rows The command is currently scanning child tables to

obtain sample rows. Columns child_tables_total,
child_tables_done, and
current_child_table_relid contain the progress
information for this phase.

computing statistics The command is computing statistics from the
sample rows obtained during the table scan.

computing extended statistics The command is computing extended statistics from
the sample rows obtained during the table scan.

finalizing analyze The command is updating pg_class. When this
phase is completed, ANALYZE will end.

Note
Note that when ANALYZE is run on a partitioned table, all of its partitions are also recursively analyzed.
In that case, ANALYZE progress is reported first for the parent table, whereby its inheritance statistics
are collected, followed by that for each partition.

CREATE INDEX Progress Reporting

Whenever CREATE INDEX or REINDEX is running, the pg_stat_progress_create_index view will contain one
row for each backend that is currently creating indexes. The tables below describe the information that will
be reported and provide information about how to interpret it.

pg_stat_progress_create_index View

Column TypeDescription
pid `integer`Process ID of backend.
datid `oid`OID of the database to which this backend is connected.
datname `name`Name of the database to which this backend is connected.
relid `oid`OID of the table on which the index is being created.
index_relid oid`OID of the index being created or reindexed. During a non-concurrent `CREATE
INDEX, this is 0.
command text`The command that is running: `CREATE INDEX, CREATE INDEX CONCURRENTLY, REINDEX, or
REINDEX CONCURRENTLY.
phase `text`Current processing phase of index creation. See Table 1.39.
lockers_total `bigint`Total number of lockers to wait for, when applicable.
lockers_done `bigint`Number of lockers already waited for.
current_locker_pid `bigint`Process ID of the locker currently being waited for.
blocks_total `bigint`Total number of blocks to be processed in the current phase.
blocks_done `bigint`Number of blocks already processed in the current phase.

39

https://www.postgresql.org/docs/current/progress-reporting.html#CREATE-INDEX-PHASES

tuples_total `bigint`Total number of tuples to be processed in the current phase.
tuples_done `bigint`Number of tuples already processed in the current phase.
partitions_total bigint`When creating an index on a partitioned table, this column is set to
the total number of partitions on which the index is to be created. This field is `0 during a
REINDEX.
partitions_done bigint`When creating an index on a partitioned table, this column is set to
the number of partitions on which the index has been created. This field is `0 during a REINDEX.

CREATE INDEX Phases

Phase Description
initializing CREATE INDEX or REINDEX is preparing to create the

index. This phase is expected to be very brief.
waiting for writers before build CREATE INDEX CONCURRENTLY or REINDEX

CONCURRENTLY is waiting for transactions with write
locks that can potentially see the table to finish. This
phase is skipped when not in concurrent mode.
Columns lockers_total, lockers_done and
current_locker_pid contain the progress
information for this phase.

building index The index is being built by the access method-
specific code. In this phase, access methods that
support progress reporting fill in their own progress
data, and the subphase is indicated in this column.
Typically, blocks_total and blocks_done will contain
progress data, as well as potentially tuples_total
and tuples_done.

waiting for writers before validation CREATE INDEX CONCURRENTLY or REINDEX
CONCURRENTLY is waiting for transactions with write
locks that can potentially write into the table to
finish. This phase is skipped when not in concurrent
mode. Columns lockers_total, lockers_done and
current_locker_pid contain the progress
information for this phase.

index validation: scanning index CREATE INDEX CONCURRENTLY is scanning the index
searching for tuples that need to be validated. This
phase is skipped when not in concurrent mode.
Columns blocks_total (set to the total size of the
index) and blocks_done contain the progress
information for this phase.

index validation: sorting tuples CREATE INDEX CONCURRENTLY is sorting the output of
the index scanning phase.

index validation: scanning table CREATE INDEX CONCURRENTLY is scanning the table to
validate the index tuples collected in the previous
two phases. This phase is skipped when not in
concurrent mode. Columns blocks_total (set to the
total size of the table) and blocks_done contain the
progress information for this phase.

waiting for old snapshots CREATE INDEX CONCURRENTLY or REINDEX
CONCURRENTLY is waiting for transactions that can
potentially see the table to release their snapshots.
This phase is skipped when not in concurrent mode.
Columns lockers_total, lockers_done and
current_locker_pid contain the progress
information for this phase.

40

waiting for readers before marking dead REINDEX CONCURRENTLY is waiting for transactions
with read locks on the table to finish, before marking
the old index dead. This phase is skipped when not
in concurrent mode. Columns lockers_total,
lockers_done and current_locker_pid contain the
progress information for this phase.

waiting for readers before dropping REINDEX CONCURRENTLY is waiting for transactions
with read locks on the table to finish, before
dropping the old index. This phase is skipped when
not in concurrent mode. Columns lockers_total,
lockers_done and current_locker_pid contain the
progress information for this phase.

VACUUM Progress Reporting

Whenever VACUUM is running, the pg_stat_progress_vacuum view will contain one row for each backend
(including autovacuum worker processes) that is currently vacuuming. The tables below describe the
information that will be reported and provide information about how to interpret it. Progress for VACUUM
FULL commands is reported via pg_stat_progress_cluster because both VACUUM FULL and CLUSTER rewrite
the table, while regular VACUUM only modifies it in place.

pg_stat_progress_vacuum View

Column TypeDescription
pid `integer`Process ID of backend.
datid `oid`OID of the database to which this backend is connected.
datname `name`Name of the database to which this backend is connected.
relid `oid`OID of the table being vacuumed.
phase `text`Current processing phase of vacuum.
heap_blks_total bigint`Total number of heap blocks in the table. This number is reported as of
the beginning of the scan; blocks added later will not be (and need not be) visited by this
`VACUUM.
heap_blks_scanned bigint`Number of heap blocks scanned. Because the visibility map is used to
optimize scans, some blocks will be skipped without inspection; skipped blocks are included in
this total, so that this number will eventually become equal to `heap_blks_total when the
vacuum is complete. This counter only advances when the phase is scanning heap.
heap_blks_vacuumed bigint`Number of heap blocks vacuumed. Unless the table has no indexes,
this counter only advances when the phase is `vacuuming heap. Blocks that contain no dead tuples
are skipped, so the counter may sometimes skip forward in large increments.
index_vacuum_count `bigint`Number of completed index vacuum cycles.
max_dead_tuples `bigint`Number of dead tuples that we can store before needing to perform an index
vacuum cycle, based on maintenance_work_mem.
num_dead_tuples `bigint`Number of dead tuples collected since the last index vacuum cycle.

VACUUM Phases

Phase Description
initializing VACUUM is preparing to begin scanning the heap. This

phase is expected to be very brief.
scanning heap VACUUM is currently scanning the heap. It will prune

and defragment each page if required, and possibly
perform freezing activity. The heap_blks_scanned
column can be used to monitor the progress of the
scan.

41

https://www.postgresql.org/docs/current/storage-vm.html
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-MAINTENANCE-WORK-MEM

vacuuming indexes VACUUM is currently vacuuming the indexes. If a table
has any indexes, this will happen at least once per
vacuum, after the heap has been completely
scanned. It may happen multiple times per vacuum if
maintenance_work_mem (or, in the case of
autovacuum, autovacuum_work_mem if set) is
insufficient to store the number of dead tuples
found.

vacuuming heap VACUUM is currently vacuuming the heap. Vacuuming
the heap is distinct from scanning the heap, and
occurs after each instance of vacuuming indexes. If
heap_blks_scanned is less than heap_blks_total, the
system will return to scanning the heap after this
phase is completed; otherwise, it will begin cleaning
up indexes after this phase is completed.

cleaning up indexes VACUUM is currently cleaning up indexes. This occurs
after the heap has been completely scanned and all
vacuuming of the indexes and the heap has been
completed.

truncating heap VACUUM is currently truncating the heap so as to
return empty pages at the end of the relation to the
operating system. This occurs after cleaning up
indexes.

performing final cleanup VACUUM is performing final cleanup. During this phase,
VACUUM will vacuum the free space map, update
statistics in pg_class, and report statistics to the
cumulative statistics system. When this phase is
completed, VACUUM will end.

CLUSTER Progress Reporting

Whenever CLUSTER or VACUUM FULL is running, the pg_stat_progress_cluster view will contain a row for
each backend that is currently running either command. The tables below describe the information that will
be reported and provide information about how to interpret it.

pg_stat_progress_cluster View

Column TypeDescriptio
pid `integer`Process ID of backend.
datid `oid`OID of the database to which this backend is connected.
datname `name`Name of the database to which this backend is connected.
relid `oid`OID of the table being clustered.
command text`The command that is running. Either `CLUSTER or VACUUM FULL.
phase `text`Current processing phase. See Table 1.43.
cluster_index_relid `oid`If the table is being scanned using an index, this is the OID of the index being
used; otherwise, it is zero.
heap_tuples_scanned bigint`Number of heap tuples scanned. This counter only advances when the
phase is `seq scanning heap, index scanning heap or writing new heap.
heap_tuples_written bigint`Number of heap tuples written. This counter only advances when the
phase is `seq scanning heap, index scanning heap or writing new heap.
heap_blks_total bigint`Total number of heap blocks in the table. This number is reported as of
the beginning of `seq scanning heap.
heap_blks_scanned bigint`Number of heap blocks scanned. This counter only advances when the
phase is `seq scanning heap.

42

https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-MAINTENANCE-WORK-MEM
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-AUTOVACUUM-WORK-MEM
https://www.postgresql.org/docs/current/progress-reporting.html#CLUSTER-PHASES

index_rebuild_count bigint`Number of indexes rebuilt. This counter only advances when the
phase is `rebuilding index.

CLUSTER and VACUUM FULL Phases

Phase Description
initializing The command is preparing to begin scanning the

heap. This phase is expected to be very brief.
seq scanning heap The command is currently scanning the table using a

sequential scan.
index scanning heap CLUSTER is currently scanning the table using an

index scan.
sorting tuples CLUSTER is currently sorting tuples.
writing new heap CLUSTER is currently writing the new heap.
swapping relation files The command is currently swapping newly-built files

into place.
rebuilding index The command is currently rebuilding an index.
performing final cleanup The command is performing final cleanup. When this

phase is completed, CLUSTER or VACUUM FULL will
end.

Base Backup Progress Reporting

Whenever an application like pg_basebackup is taking a base backup, the pg_stat_progress_basebackup
view will contain a row for each WAL sender process that is currently running the BASE_BACKUP replication
command and streaming the backup. The tables below describe the information that will be reported and
provide information about how to interpret it.

pg_stat_progress_basebackup View

Column TypeDescription
pid `integer`Process ID of a WAL sender process.
phase `text`Current processing phase.
backup_total bigint`Total amount of data that will be streamed. This is estimated and reported
as of the beginning of `streaming database files phase. Note that this is only an approximation since
the database may change during streaming database files phase and WAL log may be included in the
backup later. This is always the same value as backup_streamed once the amount of data streamed exceeds
the estimated total size. If the estimation is disabled in pg_basebackup (i.e., --no-estimate-size option is
specified), this is NULL.
backup_streamed bigint`Amount of data streamed. This counter only advances when the phase is
`streaming database files or transferring wal files.
tablespaces_total `bigint`Total number of tablespaces that will be streamed.
tablespaces_streamed bigint`Number of tablespaces streamed. This counter only advances when
the phase is `streaming database files.

Base Backup Phases

Phase Description
initializing The WAL sender process is preparing to begin the

backup. This phase is expected to be very brief.
waiting for checkpoint to finish The WAL sender process is currently performing

pg_backup_start to prepare to take a base backup,
and waiting for the start-of-backup checkpoint to
finish.

43

estimating backup size The WAL sender process is currently estimating the
total amount of database files that will be streamed
as a base backup.

streaming database files The WAL sender process is currently streaming
database files as a base backup.

waiting for wal archiving to finish The WAL sender process is currently performing
pg_backup_stop to finish the backup, and waiting for
all the WAL files required for the base backup to be
successfully archived. If either --wal-method=none or
--wal-method=stream is specified in pg_basebackup,
the backup will end when this phase is completed.

transferring wal files The WAL sender process is currently transferring all
WAL logs generated during the backup. This phase
occurs after waiting for wal archiving to finish
phase if --wal-method=fetch is specified in
pg_basebackup. The backup will end when this
phase is completed.

COPY Progress Reporting

Whenever COPY is running, the pg_stat_progress_copy view will contain one row for each backend that is
currently running a COPY command. The table below describes the information that will be reported and
provides information about how to interpret it.

pg_stat_progress_copy View

Column TypeDescription
pid `integer`Process ID of backend.
datid `oid`OID of the database to which this backend is connected.
datname `name`Name of the database to which this backend is connected.
relid oid`OID of the table on which the `COPY command is executed. It is set to 0 if copying from a
SELECT query.
command text`The command that is running: `COPY FROM, or COPY TO.
type text`The io type that the data is read from or written to: `FILE, PROGRAM, PIPE (for COPY
FROM STDIN and COPY TO STDOUT), or CALLBACK (used for example during the initial table synchronization in
logical replication).
bytes_processed bigint`Number of bytes already processed by `COPY command.
bytes_total bigint`Size of source file for `COPY FROM command in bytes. It is set to 0 if not available.
tuples_processed bigint`Number of tuples already processed by `COPY command.
tuples_excluded bigint`Number of tuples not processed because they were excluded by the `WHERE
clause of the COPY command.

Dynamic Tracing

IvorySQL provides facilities to support dynamic tracing of the database server. This allows an external utility
to be called at specific points in the code and thereby trace execution.

A number of probes or trace points are already inserted into the source code. These probes are intended to
be used by database developers and administrators. By default the probes are not compiled into IvorySQL;
the user needs to explicitly tell the configure script to make the probes available.

Currently, the DTrace utility is supported, which, at the time of this writing, is available on Solaris, macOS,
FreeBSD, NetBSD, and Oracle Linux. The SystemTap project for Linux provides a DTrace equivalent and can
also be used. Supporting other dynamic tracing utilities is theoretically possible by changing the definitions
for the macros in src/include/utils/probes.h.

44

https://en.wikipedia.org/wiki/DTrace
https://sourceware.org/systemtap/

Compiling for Dynamic Tracing

By default, probes are not available, so you will need to explicitly tell the configure script to make the probes
available in IvorySQL. To include DTrace support specify --enable-dtrace to configure.

Built-in Probes

A number of standard probes are provided in the source code, More probes can certainly be added to
enhance IvorySQL’s observability.

Built-in DTrace Probes

Name Parameters Description
transaction-start (LocalTransactionId) Probe that fires at the start of a

new transaction. arg0 is the
transaction ID.

transaction-commit (LocalTransactionId) Probe that fires when a transaction
completes successfully. arg0 is the
transaction ID.

transaction-abort (LocalTransactionId) Probe that fires when a transaction
completes unsuccessfully. arg0 is
the transaction ID.

query-start (const char *) Probe that fires when the
processing of a query is started.
arg0 is the query string.

query-done (const char *) Probe that fires when the
processing of a query is complete.
arg0 is the query string.

query-parse-start (const char *) Probe that fires when the parsing
of a query is started. arg0 is the
query string.

query-parse-done (const char *) Probe that fires when the parsing
of a query is complete. arg0 is the
query string.

query-rewrite-start (const char *) Probe that fires when the rewriting
of a query is started. arg0 is the
query string.

query-rewrite-done (const char *) Probe that fires when the rewriting
of a query is complete. arg0 is the
query string.

query-plan-start () Probe that fires when the planning
of a query is started.

query-plan-done () Probe that fires when the planning
of a query is complete.

query-execute-start () Probe that fires when the
execution of a query is started.

query-execute-done () Probe that fires when the
execution of a query is complete.

statement-status (const char *) Probe that fires anytime the server
process updates its
pg_stat_activity.status. arg0 is
the new status string.

45

checkpoint-start (int) Probe that fires when a checkpoint
is started. arg0 holds the bitwise
flags used to distinguish different
checkpoint types, such as
shutdown, immediate or force.

checkpoint-done (int, int, int, int, int) Probe that fires when a checkpoint
is complete. (The probes listed
next fire in sequence during
checkpoint processing.) arg0 is the
number of buffers written. arg1 is
the total number of buffers. arg2,
arg3 and arg4 contain the number
of WAL files added, removed and
recycled respectively.

clog-checkpoint-start (bool) Probe that fires when the CLOG
portion of a checkpoint is started.
arg0 is true for normal checkpoint,
false for shutdown checkpoint.

clog-checkpoint-done (bool) Probe that fires when the CLOG
portion of a checkpoint is
complete. arg0 has the same
meaning as for clog-checkpoint-
start.

subtrans-checkpoint-start (bool) Probe that fires when the
SUBTRANS portion of a
checkpoint is started. arg0 is true
for normal checkpoint, false for
shutdown checkpoint.

subtrans-checkpoint-done (bool) Probe that fires when the
SUBTRANS portion of a
checkpoint is complete. arg0 has
the same meaning as for
subtrans-checkpoint-start.

multixact-checkpoint-start (bool) Probe that fires when the MultiXact
portion of a checkpoint is started.
arg0 is true for normal checkpoint,
false for shutdown checkpoint.

multixact-checkpoint-done (bool) Probe that fires when the MultiXact
portion of a checkpoint is
complete. arg0 has the same
meaning as for multixact-
checkpoint-start.

buffer-checkpoint-start (int) Probe that fires when the buffer-
writing portion of a checkpoint is
started. arg0 holds the bitwise
flags used to distinguish different
checkpoint types, such as
shutdown, immediate or force.

buffer-sync-start (int, int) Probe that fires when we begin to
write dirty buffers during
checkpoint (after identifying which
buffers must be written). arg0 is
the total number of buffers. arg1 is
the number that are currently dirty
and need to be written.

46

buffer-sync-written (int) Probe that fires after each buffer is
written during checkpoint. arg0 is
the ID number of the buffer.

buffer-sync-done (int, int, int) Probe that fires when all dirty
buffers have been written. arg0 is
the total number of buffers. arg1 is
the number of buffers actually
written by the checkpoint process.
arg2 is the number that were
expected to be written (arg1 of
buffer-sync-start); any
difference reflects other processes
flushing buffers during the
checkpoint.

buffer-checkpoint-sync-start () Probe that fires after dirty buffers
have been written to the kernel,
and before starting to issue fsync
requests.

buffer-checkpoint-done () Probe that fires when syncing of
buffers to disk is complete.

twophase-checkpoint-start () Probe that fires when the two-
phase portion of a checkpoint is
started.

twophase-checkpoint-done () Probe that fires when the two-
phase portion of a checkpoint is
complete.

buffer-read-start (ForkNumber, BlockNumber, Oid,
Oid, Oid, int, bool)

Probe that fires when a buffer read
is started. arg0 and arg1 contain
the fork and block numbers of the
page (but arg1 will be -1 if this is a
relation extension request). arg2,
arg3, and arg4 contain the
tablespace, database, and relation
OIDs identifying the relation. arg5
is the ID of the backend which
created the temporary relation for
a local buffer, or InvalidBackendId
(-1) for a shared buffer. arg6 is true
for a relation extension request,
false for normal read.

buffer-read-done (ForkNumber, BlockNumber, Oid,
Oid, Oid, int, bool, bool)

Probe that fires when a buffer read
is complete. arg0 and arg1 contain
the fork and block numbers of the
page (if this is a relation extension
request, arg1 now contains the
block number of the newly added
block). arg2, arg3, and arg4 contain
the tablespace, database, and
relation OIDs identifying the
relation. arg5 is the ID of the
backend which created the
temporary relation for a local
buffer, or InvalidBackendId (-1) for
a shared buffer. arg6 is true for a
relation extension request, false for
normal read. arg7 is true if the
buffer was found in the pool, false
if not.

47

buffer-flush-start (ForkNumber, BlockNumber, Oid,
Oid, Oid)

Probe that fires before issuing any
write request for a shared buffer.
arg0 and arg1 contain the fork and
block numbers of the page. arg2,
arg3, and arg4 contain the
tablespace, database, and relation
OIDs identifying the relation.

buffer-flush-done (ForkNumber, BlockNumber, Oid,
Oid, Oid)

Probe that fires when a write
request is complete. (Note that
this just reflects the time to pass
the data to the kernel; it’s
typically not actually been written
to disk yet.) The arguments are the
same as for buffer-flush-start.

buffer-write-dirty-start (ForkNumber, BlockNumber, Oid,
Oid, Oid)

Probe that fires when a server
process begins to write a dirty
buffer. (If this happens often, it
implies that shared_buffers is too
small or the background writer
control parameters need
adjustment.) arg0 and arg1
contain the fork and block
numbers of the page. arg2, arg3,
and arg4 contain the tablespace,
database, and relation OIDs
identifying the relation.

buffer-write-dirty-done (ForkNumber, BlockNumber, Oid,
Oid, Oid)

Probe that fires when a dirty-buffer
write is complete. The arguments
are the same as for buffer-write-
dirty-start.

wal-buffer-write-dirty-start () Probe that fires when a server
process begins to write a dirty WAL
buffer because no more WAL
buffer space is available. (If this
happens often, it implies that
wal_buffers is too small.)

wal-buffer-write-dirty-done () Probe that fires when a dirty WAL
buffer write is complete.

wal-insert (unsigned char, unsigned char) Probe that fires when a WAL record
is inserted. arg0 is the resource
manager (rmid) for the record.
arg1 contains the info flags.

wal-switch () Probe that fires when a WAL
segment switch is requested.

smgr-md-read-start (ForkNumber, BlockNumber, Oid,
Oid, Oid, int)

Probe that fires when beginning to
read a block from a relation. arg0
and arg1 contain the fork and
block numbers of the page. arg2,
arg3, and arg4 contain the
tablespace, database, and relation
OIDs identifying the relation. arg5
is the ID of the backend which
created the temporary relation for
a local buffer, or InvalidBackendId
(-1) for a shared buffer.

48

https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-WAL-BUFFERS

smgr-md-read-done (ForkNumber, BlockNumber, Oid,
Oid, Oid, int, int, int)

Probe that fires when a block read
is complete. arg0 and arg1 contain
the fork and block numbers of the
page. arg2, arg3, and arg4 contain
the tablespace, database, and
relation OIDs identifying the
relation. arg5 is the ID of the
backend which created the
temporary relation for a local
buffer, or InvalidBackendId (-1) for
a shared buffer. arg6 is the number
of bytes actually read, while arg7 is
the number requested (if these are
different it indicates trouble).

smgr-md-write-start (ForkNumber, BlockNumber, Oid,
Oid, Oid, int)

Probe that fires when beginning to
write a block to a relation. arg0
and arg1 contain the fork and
block numbers of the page. arg2,
arg3, and arg4 contain the
tablespace, database, and relation
OIDs identifying the relation. arg5
is the ID of the backend which
created the temporary relation for
a local buffer, or InvalidBackendId
(-1) for a shared buffer.

smgr-md-write-done (ForkNumber, BlockNumber, Oid,
Oid, Oid, int, int, int)

Probe that fires when a block write
is complete. arg0 and arg1 contain
the fork and block numbers of the
page. arg2, arg3, and arg4 contain
the tablespace, database, and
relation OIDs identifying the
relation. arg5 is the ID of the
backend which created the
temporary relation for a local
buffer, or InvalidBackendId (-1) for
a shared buffer. arg6 is the number
of bytes actually written, while
arg7 is the number requested (if
these are different it indicates
trouble).

sort-start (int, bool, int, int, bool,
int)

Probe that fires when a sort
operation is started. arg0 indicates
heap, index or datum sort. arg1 is
true for unique-value enforcement.
arg2 is the number of key columns.
arg3 is the number of kilobytes of
work memory allowed. arg4 is true
if random access to the sort result
is required. arg5 indicates serial
when 0, parallel worker when 1, or
parallel leader when 2.

sort-done (bool, long) Probe that fires when a sort is
complete. arg0 is true for external
sort, false for internal sort. arg1 is
the number of disk blocks used for
an external sort, or kilobytes of
memory used for an internal sort.

49

lwlock-acquire (char *, LWLockMode) Probe that fires when an LWLock
has been acquired. arg0 is the
LWLock’s tranche. arg1 is the
requested lock mode, either
exclusive or shared.

lwlock-release (char *) Probe that fires when an LWLock
has been released (but note that
any released waiters have not yet
been awakened). arg0 is the
LWLock’s tranche.

lwlock-wait-start (char *, LWLockMode) Probe that fires when an LWLock
was not immediately available and
a server process has begun to wait
for the lock to become available.
arg0 is the LWLock’s tranche.
arg1 is the requested lock mode,
either exclusive or shared.

lwlock-wait-done (char *, LWLockMode) Probe that fires when a server
process has been released from its
wait for an LWLock (it does not
actually have the lock yet). arg0 is
the LWLock’s tranche. arg1 is the
requested lock mode, either
exclusive or shared.

lwlock-condacquire (char *, LWLockMode) Probe that fires when an LWLock
was successfully acquired when
the caller specified no waiting.
arg0 is the LWLock’s tranche.
arg1 is the requested lock mode,
either exclusive or shared.

lwlock-condacquire-fail (char *, LWLockMode) Probe that fires when an LWLock
was not successfully acquired
when the caller specified no
waiting. arg0 is the LWLock’s
tranche. arg1 is the requested lock
mode, either exclusive or shared.

lock-wait-start (unsigned int, unsigned int,
unsigned int, unsigned int,
unsigned int, LOCKMODE)

Probe that fires when a request for
a heavyweight lock (lmgr lock) has
begun to wait because the lock is
not available. arg0 through arg3
are the tag fields identifying the
object being locked. arg4 indicates
the type of object being locked.
arg5 indicates the lock type being
requested.

lock-wait-done (unsigned int, unsigned int,
unsigned int, unsigned int,
unsigned int, LOCKMODE)

Probe that fires when a request for
a heavyweight lock (lmgr lock) has
finished waiting (i.e., has acquired
the lock). The arguments are the
same as for lock-wait-start.

deadlock-found () Probe that fires when a deadlock is
found by the deadlock detector.

Defined Types Used in Probe Parameters

Type Definition
LocalTransactionId unsigned int

50

LWLockMode int
LOCKMODE int
BlockNumber unsigned int
Oid unsigned int
ForkNumber int
bool unsigned char

Using Probes

The example below shows a DTrace script for analyzing transaction counts in the system, as an alternative to
snapshotting pg_stat_database before and after a performance test:

#!/usr/sbin/dtrace -qs

postgresql$1:::transaction-start
{
 @start["Start"] = count();
 self->ts = timestamp;
}

postgresql$1:::transaction-abort
{
 @abort["Abort"] = count();
}

postgresql$1:::transaction-commit
/self->ts/
{
 @commit["Commit"] = count();
 @time["Total time (ns)"] = sum(timestamp - self->ts);
 self->ts=0;
}

When executed, the example D script gives output such as:

./txn_count.d `pgrep -n postgres` or ./txn_count.d <PID>
^C

Start 71
Commit 70
Total time (ns) 2312105013

51

Note
SystemTap uses a different notation for trace scripts than DTrace does, even though the underlying
trace points are compatible. One point worth noting is that at this writing, SystemTap scripts must
reference probe names using double underscores in place of hyphens. This is expected to be fixed in
future SystemTap releases.

Defining New Probes

New probes can be defined within the code wherever the developer desires, though this will require a
recompilation. Below are the steps for inserting new probes:

1. Decide on probe names and data to be made available through the probes
2. Add the probe definitions to src/backend/utils/probes.d
3. Include pg_trace.h if it is not already present in the module(s) containing the probe points, and insert

TRACE_POSTGRESQL probe macros at the desired locations in the source code
4. Recompile and verify that the new probes are available

Example: Here is an example of how you would add a probe to trace all new transactions by transaction ID.

1. Decide that the probe will be named transaction-start and requires a parameter of type
LocalTransactionId

2. Add the probe definition to src/backend/utils/probes.d:

```
probe transaction__start(LocalTransactionId);
```

Note the use of the double underline in the probe name. In a DTrace script using
the probe, the double underline needs to be replaced with a hyphen, so
`transaction-start` is the name to document for users.

3. At compile time, transaction__start is converted to a macro called
TRACE_POSTGRESQL_TRANSACTION_START (notice the underscores are single here), which is available by
including pg_trace.h. Add the macro call to the appropriate location in the source code. In this case, it
looks like the following:

```
TRACE_POSTGRESQL_TRANSACTION_START(vxid.localTransactionId);
```

4. After recompiling and running the new binary, check that your newly added probe is available by
executing the following DTrace command. You should see similar output:

```
# dtrace -ln transaction-start
   ID    PROVIDER          MODULE           FUNCTION NAME
18705 postgresql49878     postgres     StartTransactionCommand transaction-start

52



18755 postgresql49877     postgres     StartTransactionCommand transaction-start
18805 postgresql49876     postgres     StartTransactionCommand transaction-start
18855 postgresql49875     postgres     StartTransactionCommand transaction-start
18986 postgresql49873     postgres     StartTransactionCommand transaction-start
```

There are a few things to be careful about when adding trace macros to the C code:

• You should take care that the data types specified for a probe’s parameters match the data types of the
variables used in the macro. Otherwise, you will get compilation errors.

• On most platforms, if IvorySQL is built with --enable-dtrace, the arguments to a trace macro will be
evaluated whenever control passes through the macro, even if no tracing is being done. This is usually
not worth worrying about if you are just reporting the values of a few local variables. But beware of
putting expensive function calls into the arguments. If you need to do that, consider protecting the
macro with a check to see if the trace is actually enabled:

```
if (TRACE_POSTGRESQL_TRANSACTION_START_ENABLED())
    TRACE_POSTGRESQL_TRANSACTION_START(some_function(...));
```

Each trace macro has a corresponding ENABLED macro.

Monitoring Disk Usage

Determining Disk Usage

Each table has a primary heap disk file where most of the data is stored. If the table has any columns with
potentially-wide values, there also might be a TOAST file associated with the table, which is used to store
values too wide to fit comfortably in the main table . There will be one valid index on the TOAST table, if
present. There also might be indexes associated with the base table. Each table and index is stored in a
separate disk file — possibly more than one file, if the file would exceed one gigabyte.

You can monitor disk space in three ways: using the SQL functions, using the oid2name module, or using
manual inspection of the system catalogs. The SQL functions are the easiest to use and are generally
recommended. The remainder of this section shows how to do it by inspection of the system catalogs.

Using psql on a recently vacuumed or analyzed database, you can issue queries to see the disk usage of any
table:

SELECT pg_relation_filepath(oid), relpages FROM pg_class WHERE relname = 'customer';

 pg_relation_filepath | relpages
----------------------+----------
 base/16384/16806 | 60
(1 row)

Each page is typically 8 kilobytes. (Remember, relpages is only updated by VACUUM, ANALYZE, and a few DDL
commands such as CREATE INDEX.) The file path name is of interest if you want to examine the table’s disk
file directly.

53

https://www.postgresql.org/docs/current/oid2name.html

To show the space used by TOAST tables, use a query like the following:

SELECT relname, relpages
FROM pg_class,
 (SELECT reltoastrelid
 FROM pg_class
 WHERE relname = 'customer') AS ss
WHERE oid = ss.reltoastrelid OR
 oid = (SELECT indexrelid
 FROM pg_index
 WHERE indrelid = ss.reltoastrelid)
ORDER BY relname;

 relname | relpages
----------------------+----------
 pg_toast_16806 | 0
 pg_toast_16806_index | 1

You can easily display index sizes, too:

SELECT c2.relname, c2.relpages
FROM pg_class c, pg_class c2, pg_index i
WHERE c.relname = 'customer' AND
 c.oid = i.indrelid AND
 c2.oid = i.indexrelid
ORDER BY c2.relname;

 relname | relpages
-------------------+----------
 customer_id_index | 26

It is easy to find your largest tables and indexes using this information:

SELECT relname, relpages
FROM pg_class
ORDER BY relpages DESC;

 relname | relpages
----------------------+----------
 bigtable | 3290
 customer | 3144

54

Disk Full Failure

The most important disk monitoring task of a database administrator is to make sure the disk doesn’t
become full. A filled data disk will not result in data corruption, but it might prevent useful activity from
occurring. If the disk holding the WAL files grows full, database server panic and consequent shutdown
might occur.

If you cannot free up additional space on the disk by deleting other things, you can move some of the
database files to other file systems by making use of tablespaces.

Tip
Some file systems perform badly when they are almost full, so do not wait until the disk is completely
full to take action.

If your system supports per-user disk quotas, then the database will naturally be subject to whatever quota
is placed on the user the server runs as. Exceeding the quota will have the same bad effects as running out of
disk space entirely.

Maintenance
Routine Vacuuming
IvorySQL databases require periodic maintenance known as vacuuming. For many installations, it is
sufficient to let vacuuming be performed by the autovacuum daemon. You might need to adjust the
autovacuuming parameters described there to obtain best results for your situation. Some database
administrators will want to supplement or replace the daemon’s activities with manually-managed VACUUM
commands, which typically are executed according to a schedule by cron or Task Scheduler scripts. To set
up manually-managed vacuuming properly, it is essential to understand the issues discussed in the next few
subsections. Administrators who rely on autovacuuming may still wish to skim this material to help them
understand and adjust autovacuuming.

Vacuuming Basics

IvorySQL’s command has to process each table on a regular basis for several reasons:

1. To recover or reuse disk space occupied by updated or deleted rows.
2. To update data statistics used by the PostgreSQL query planner.
3. To update the visibility map, which speeds up index-only scans.
4. To protect against loss of very old data due to transaction ID wraparound or multixact ID wraparound.

Each of these reasons dictates performing VACUUM operations of varying frequency and scope, as explained in
the following subsections.

There are two variants of VACUUM: standard VACUUM and VACUUM FULL. VACUUM FULL can reclaim more disk
space but runs much more slowly. Also, the standard form of VACUUM can run in parallel with production
database operations. (Commands such as SELECT, INSERT, UPDATE, and DELETE will continue to function
normally, though you will not be able to modify the definition of a table with commands such as ALTER
TABLE while it is being vacuumed.) VACUUM FULL requires an ACCESS EXCLUSIVE lock on the table it is working
on, and therefore cannot be done in parallel with other use of the table. Generally, therefore, administrators
should strive to use standard VACUUM and avoid VACUUM FULL.

VACUUM creates a substantial amount of I/O traffic, which can cause poor performance for other active
sessions. There are configuration parameters that can be adjusted to reduce the performance impact of
background vacuuming.

55

https://www.postgresql.org/docs/current/indexes-index-only-scans.html

Recovering Disk Space

In IvorySQL，an UPDATE or DELETE of a row does not immediately remove the old version of the row. This
approach is necessary to gain the benefits of multiversion concurrency control : the row version must not be
deleted while it is still potentially visible to other transactions. But eventually, an outdated or deleted row
version is no longer of interest to any transaction. The space it occupies must then be reclaimed for reuse by
new rows, to avoid unbounded growth of disk space requirements. This is done by running VACUUM.

The standard form of VACUUM removes dead row versions in tables and indexes and marks the space
available for future reuse. However, it will not return the space to the operating system, except in the special
case where one or more pages at the end of a table become entirely free and an exclusive table lock can be
easily obtained. In contrast, VACUUM FULL actively compacts tables by writing a complete new version of the
table file with no dead space. This minimizes the size of the table, but can take a long time. It also requires
extra disk space for the new copy of the table, until the operation completes.

The usual goal of routine vacuuming is to do standard VACUUM`s often enough to avoid needing `VACUUM
FULL. The autovacuum daemon attempts to work this way, and in fact will never issue VACUUM FULL. In this
approach, the idea is not to keep tables at their minimum size, but to maintain steady-state usage of disk
space: each table occupies space equivalent to its minimum size plus however much space gets used up
between vacuum runs. Although VACUUM FULL can be used to shrink a table back to its minimum size and
return the disk space to the operating system, there is not much point in this if the table will just grow again
in the future. Thus, moderately-frequent standard VACUUM runs are a better approach than infrequent VACUUM
FULL runs for maintaining heavily-updated tables.

Some administrators prefer to schedule vacuuming themselves, for example doing all the work at night
when load is low. The difficulty with doing vacuuming according to a fixed schedule is that if a table has an
unexpected spike in update activity, it may get bloated to the point that VACUUM FULL is really necessary to
reclaim space. Using the autovacuum daemon alleviates this problem, since the daemon schedules
vacuuming dynamically in response to update activity. It is unwise to disable the daemon completely unless
you have an extremely predictable workload. One possible compromise is to set the daemon’s parameters
so that it will only react to unusually heavy update activity, thus keeping things from getting out of hand,
while scheduled `VACUUM`s are expected to do the bulk of the work when the load is typical.

For those not using autovacuum, a typical approach is to schedule a database-wide VACUUM once a day
during a low-usage period, supplemented by more frequent vacuuming of heavily-updated tables as
necessary. (Some installations with extremely high update rates vacuum their busiest tables as often as once
every few minutes.) If you have multiple databases in a cluster, don’t forget to VACUUM each one; the
program vacuumdb might be helpful.

Tip
Plain VACUUM may not be satisfactory when a table contains large numbers of dead row versions as a
result of massive update or delete activity. If you have such a table and you need to reclaim the excess
disk space it occupies, you will need to use VACUUM FULL, or alternatively CLUSTER or one of the table-
rewriting variants of ALTER TABLE. These commands rewrite an entire new copy of the table and build
new indexes for it. All these options require an ACCESS EXCLUSIVE lock. Note that they also temporarily
use extra disk space approximately equal to the size of the table, since the old copies of the table and
indexes can’t be released until the new ones are complete.

Tip
If you have a table whose entire contents are deleted on a periodic basis, consider doing it with
TRUNCATE rather than using DELETE followed by VACUUM. TRUNCATE removes the entire content of the
table immediately, without requiring a subsequent VACUUM or VACUUM FULL to reclaim the now-unused
disk space. The disadvantage is that strict MVCC semantics are violated.

56

https://www.postgresql.org/docs/current/app-vacuumdb.html
https://www.postgresql.org/docs/current/sql-cluster.html
https://www.postgresql.org/docs/current/sql-altertable.html
https://www.postgresql.org/docs/current/sql-truncate.html

Updating Planner Statistics

The IvorySQL query planner relies on statistical information about the contents of tables in order to generate
good plans for queries. These statistics are gathered by the ANALYZE command, which can be invoked by
itself or as an optional step in VACUUM. It is important to have reasonably accurate statistics, otherwise poor
choices of plans might degrade database performance.

The autovacuum daemon, if enabled, will automatically issue ANALYZE commands whenever the content of a
table has changed sufficiently. However, administrators might prefer to rely on manually-scheduled ANALYZE
operations, particularly if it is known that update activity on a table will not affect the statistics of
“interesting” columns. The daemon schedules ANALYZE strictly as a function of the number of rows
inserted or updated; it has no knowledge of whether that will lead to meaningful statistical changes.

Tuples changed in partitions and inheritance children do not trigger analyze on the parent table. If the
parent table is empty or rarely changed, it may never be processed by autovacuum, and the statistics for the
inheritance tree as a whole won’t be collected. It is necessary to run ANALYZE on the parent table manually
in order to keep the statistics up to date.

As with vacuuming for space recovery, frequent updates of statistics are more useful for heavily-updated
tables than for seldom-updated ones. But even for a heavily-updated table, there might be no need for
statistics updates if the statistical distribution of the data is not changing much. A simple rule of thumb is to
think about how much the minimum and maximum values of the columns in the table change. For example,
a timestamp column that contains the time of row update will have a constantly-increasing maximum value
as rows are added and updated; such a column will probably need more frequent statistics updates than,
say, a column containing URLs for pages accessed on a website. The URL column might receive changes just
as often, but the statistical distribution of its values probably changes relatively slowly.

It is possible to run ANALYZE on specific tables and even just specific columns of a table, so the flexibility
exists to update some statistics more frequently than others if your application requires it. In practice,
however, it is usually best to just analyze the entire database, because it is a fast operation. ANALYZE uses a
statistically random sampling of the rows of a table rather than reading every single row.

Tip
Although per-column tweaking of ANALYZE frequency might not be very productive, you might find it
worthwhile to do per-column adjustment of the level of detail of the statistics collected by ANALYZE.
Columns that are heavily used in WHERE clauses and have highly irregular data distributions might
require a finer-grain data histogram than other columns. See ALTER TABLE SET STATISTICS, or change
the database-wide default using the default_statistics_target configuration parameter.

Tip
The autovacuum daemon does not issue ANALYZE commands for foreign tables, since it has no means
of determining how often that might be useful. If your queries require statistics on foreign tables for
proper planning, it’s a good idea to run manually-managed ANALYZE commands on those tables on
a suitable schedule.

Tip
The autovacuum daemon does not issue ANALYZE commands for partitioned tables. Inheritance
parents will only be analyzed if the parent itself is changed - changes to child tables do not trigger
autoanalyze on the parent table. If your queries require statistics on parent tables for proper planning,
it is necessary to periodically run a manual ANALYZE on those tables to keep the statistics up to date.

57

https://www.postgresql.org/docs/current/sql-analyze.html
https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-DEFAULT-STATISTICS-TARGET

Updating the Visibility Map

Vacuum maintains a visibility map for each table to keep track of which pages contain only tuples that are
known to be visible to all active transactions (and all future transactions, until the page is again modified).
This has two purposes. First, vacuum itself can skip such pages on the next run, since there is nothing to
clean up.

Second, it allows IvorySQL to answer some queries using only the index, without reference to the underlying
table. Since PostgreSQL indexes don’t contain tuple visibility information, a normal index scan fetches the
heap tuple for each matching index entry, to check whether it should be seen by the current transaction. An
index-only scan, on the other hand, checks the visibility map first. If it’s known that all tuples on the page
are visible, the heap fetch can be skipped. This is most useful on large data sets where the visibility map can
prevent disk accesses. The visibility map is vastly smaller than the heap, so it can easily be cached even
when the heap is very large.

Preventing Transaction ID Wraparound Failures

IvorySQL’s MVCC transaction semantics depend on being able to compare transaction ID (XID) numbers: a
row version with an insertion XID greater than the current transaction’s XID is “in the future” and should
not be visible to the current transaction. But since transaction IDs have limited size (32 bits) a cluster that
runs for a long time (more than 4 billion transactions) would suffer transaction ID wraparound: the XID
counter wraps around to zero, and all of a sudden transactions that were in the past appear to be in the
future — which means their output become invisible. In short, catastrophic data loss. (Actually the data is
still there, but that’s cold comfort if you cannot get at it.) To avoid this, it is necessary to vacuum every
table in every database at least once every two billion transactions.

The reason that periodic vacuuming solves the problem is that VACUUM will mark rows as frozen, indicating
that they were inserted by a transaction that committed sufficiently far in the past that the effects of the
inserting transaction are certain to be visible to all current and future transactions. Normal XIDs are
compared using modulo-232 arithmetic. This means that for every normal XID, there are two billion XIDs that
are “older” and two billion that are “newer”; another way to say it is that the normal XID space is
circular with no endpoint. Therefore, once a row version has been created with a particular normal XID, the
row version will appear to be “in the past” for the next two billion transactions, no matter which normal
XID we are talking about. If the row version still exists after more than two billion transactions, it will suddenly
appear to be in the future. To prevent this, IvorySQL reserves a special XID, FrozenTransactionId, which does
not follow the normal XID comparison rules and is always considered older than every normal XID. Frozen
row versions are treated as if the inserting XID were FrozenTransactionId, so that they will appear to be “in
the past” to all normal transactions regardless of wraparound issues, and so such row versions will be valid
until deleted, no matter how long that is.

vacuum_freeze_min_age controls how old an XID value has to be before rows bearing that XID will be frozen.
Increasing this setting may avoid unnecessary work if the rows that would otherwise be frozen will soon be
modified again, but decreasing this setting increases the number of transactions that can elapse before the
table must be vacuumed again.

VACUUM uses the visibility map to determine which pages of a table must be scanned. Normally, it will skip
pages that don’t have any dead row versions even if those pages might still have row versions with old XID
values. Therefore, normal VACUUM`s won’t always freeze every old row version in the table. When
that happens, `VACUUM will eventually need to perform an aggressive vacuum, which will freeze all eligible
unfrozen XID and MXID values, including those from all-visible but not all-frozen pages. In practice most
tables require periodic aggressive vacuuming. vacuum_freeze_table_age controls when VACUUM does that:
all-visible but not all-frozen pages are scanned if the number of transactions that have passed since the last
such scan is greater than vacuum_freeze_table_age minus vacuum_freeze_min_age. Setting
vacuum_freeze_table_age to 0 forces VACUUM to always use its aggressive strategy.

The maximum time that a table can go unvacuumed is two billion transactions minus the
vacuum_freeze_min_age value at the time of the last aggressive vacuum. If it were to go unvacuumed for
longer than that, data loss could result. To ensure that this does not happen, autovacuum is invoked on any
table that might contain unfrozen rows with XIDs older than the age specified by the configuration
parameter autovacuum_freeze_max_age. (This will happen even if autovacuum is disabled.)

This implies that if a table is not otherwise vacuumed, autovacuum will be invoked on it approximately once
every autovacuum_freeze_max_age minus vacuum_freeze_min_age transactions. For tables that are regularly

58

https://www.postgresql.org/docs/current/storage-vm.html
https://www.postgresql.org/docs/current/indexes-index-only-scans.html
https://www.postgresql.org/docs/current/mvcc-intro.html
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-VACUUM-FREEZE-MIN-AGE
https://www.postgresql.org/docs/current/storage-vm.html
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-VACUUM-FREEZE-TABLE-AGE
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#GUC-AUTOVACUUM-FREEZE-MAX-AGE

vacuumed for space reclamation purposes, this is of little importance. However, for static tables (including
tables that receive inserts, but no updates or deletes), there is no need to vacuum for space reclamation, so
it can be useful to try to maximize the interval between forced autovacuums on very large static tables.
Obviously one can do this either by increasing autovacuum_freeze_max_age or decreasing
vacuum_freeze_min_age.

The effective maximum for vacuum_freeze_table_age is 0.95 * autovacuum_freeze_max_age; a setting higher
than that will be capped to the maximum. A value higher than autovacuum_freeze_max_age wouldn’t make
sense because an anti-wraparound autovacuum would be triggered at that point anyway, and the 0.95
multiplier leaves some breathing room to run a manual VACUUM before that happens. As a rule of thumb,
vacuum_freeze_table_age should be set to a value somewhat below autovacuum_freeze_max_age, leaving
enough gap so that a regularly scheduled VACUUM or an autovacuum triggered by normal delete and update
activity is run in that window. Setting it too close could lead to anti-wraparound autovacuums, even though
the table was recently vacuumed to reclaim space, whereas lower values lead to more frequent aggressive
vacuuming.

The sole disadvantage of increasing autovacuum_freeze_max_age (and vacuum_freeze_table_age along with
it) is that the pg_xact and pg_commit_ts subdirectories of the database cluster will take more space, because
it must store the commit status and (if track_commit_timestamp is enabled) timestamp of all transactions
back to the autovacuum_freeze_max_age horizon. The commit status uses two bits per transaction, so if
autovacuum_freeze_max_age is set to its maximum allowed value of two billion, pg_xact can be expected to
grow to about half a gigabyte and pg_commit_ts to about 20GB. If this is trivial compared to your total
database size, setting autovacuum_freeze_max_age to its maximum allowed value is recommended.
Otherwise, set it depending on what you are willing to allow for pg_xact and pg_commit_ts storage. (The
default, 200 million transactions, translates to about 50MB of pg_xact storage and about 2GB of
pg_commit_ts storage.)

One disadvantage of decreasing vacuum_freeze_min_age is that it might cause VACUUM to do useless work:
freezing a row version is a waste of time if the row is modified soon thereafter (causing it to acquire a new
XID). So the setting should be large enough that rows are not frozen until they are unlikely to change any
more.

To track the age of the oldest unfrozen XIDs in a database, VACUUM stores XID statistics in the system tables
pg_class and pg_database. In particular, the relfrozenxid column of a table’s pg_class row contains the
oldest remaining unfrozen XID at the end of the most recent VACUUM that successfully advanced
relfrozenxid (typically the most recent aggressive VACUUM). Similarly, the datfrozenxid column of a
database’s pg_database row is a lower bound on the unfrozen XIDs appearing in that database — it is just
the minimum of the per-table relfrozenxid values within the database. A convenient way to examine this
information is to execute queries such as:

SELECT c.oid::regclass as table_name,
 greatest(age(c.relfrozenxid),age(t.relfrozenxid)) as age
FROM pg_class c
LEFT JOIN pg_class t ON c.reltoastrelid = t.oid
WHERE c.relkind IN ('r', 'm');

SELECT datname, age(datfrozenxid) FROM pg_database;

The age column measures the number of transactions from the cutoff XID to the current transaction’s XID.

VACUUM normally only scans pages that have been modified since the last vacuum, but relfrozenxid can
only be advanced when every page of the table that might contain unfrozen XIDs is scanned. This happens
when relfrozenxid is more than vacuum_freeze_table_age transactions old, when VACUUM’s `FREEZE
option is used, or when all pages that are not already all-frozen happen to require vacuuming to remove
dead row versions. When VACUUM scans every page in the table that is not already all-frozen, it should set
age(relfrozenxid) to a value just a little more than the vacuum_freeze_min_age setting that was used (more
by the number of transactions started since the VACUUM started). VACUUM will set relfrozenxid to the oldest
XID that remains in the table, so it’s possible that the final value will be much more recent than strictly

59

required. If no relfrozenxid-advancing VACUUM is issued on the table until autovacuum_freeze_max_age is
reached, an autovacuum will soon be forced for the table.

If for some reason autovacuum fails to clear old XIDs from a table, the system will begin to emit warning
messages like this when the database’s oldest XIDs reach forty million transactions from the wraparound
point:

WARNING: database "mydb" must be vacuumed within 39985967 transactions
HINT: To avoid a database shutdown, execute a database-wide VACUUM in that database.

(A manual VACUUM should fix the problem, as suggested by the hint; but note that the VACUUM must be
performed by a superuser, else it will fail to process system catalogs and thus not be able to advance the
database’s datfrozenxid.) If these warnings are ignored, the system will shut down and refuse to start any
new transactions once there are fewer than three million transactions left until wraparound:

ERROR: database is not accepting commands to avoid wraparound data loss in database
"mydb"
HINT: Stop the postmaster and vacuum that database in single-user mode.

The three-million-transaction safety margin exists to let the administrator recover without data loss, by
manually executing the required VACUUM commands. However, since the system will not execute commands
once it has gone into the safety shutdown mode, the only way to do this is to stop the server and start the
server in single-user mode to execute VACUUM. The shutdown mode is not enforced in single-user mode. See
the postgres reference page for details about using single-user mode.

Multixact IDs are used to support row locking by multiple transactions. Since there is only limited space in a
tuple header to store lock information, that information is encoded as a “multiple transaction ID”, or
multixact ID for short, whenever there is more than one transaction concurrently locking a row. Information
about which transaction IDs are included in any particular multixact ID is stored separately in the
pg_multixact subdirectory, and only the multixact ID appears in the xmax field in the tuple header. Like
transaction IDs, multixact IDs are implemented as a 32-bit counter and corresponding storage, all of which
requires careful aging management, storage cleanup, and wraparound handling. There is a separate storage
area which holds the list of members in each multixact, which also uses a 32-bit counter and which must
also be managed.

Whenever VACUUM scans any part of a table, it will replace any multixact ID it encounters which is older than
vacuum_multixact_freeze_min_age by a different value, which can be the zero value, a single transaction ID,
or a newer multixact ID. For each table, pg_class.relminmxid stores the oldest possible multixact ID still
appearing in any tuple of that table. If this value is older than vacuum_multixact_freeze_table_age, an
aggressive vacuum is forced. As discussed in the previous section, an aggressive vacuum means that only
those pages which are known to be all-frozen will be skipped. mxid_age() can be used on pg_class
.relminmxid to find its age.

Aggressive VACUUM`s, regardless of what causes them, are guaranteed to be able to advance the
table’s `relminmxid. Eventually, as all tables in all databases are scanned and their oldest multixact
values are advanced, on-disk storage for older multixacts can be removed.

As a safety device, an aggressive vacuum scan will occur for any table whose multixact-age is greater than
autovacuum_multixact_freeze_max_age. Also, if the storage occupied by multixacts members exceeds 2GB,
aggressive vacuum scans will occur more often for all tables, starting with those that have the oldest
multixact-age. Both of these kinds of aggressive scans will occur even if autovacuum is nominally disabled.

The Autovacuum Daemon

IvorySQL has an optional but highly recommended feature called autovacuum, whose purpose is to
automate the execution of VACUUM and ANALYZE commands. When enabled, autovacuum checks for tables
that have had a large number of inserted, updated or deleted tuples. These checks use the statistics
collection facility; therefore, autovacuum cannot be used unless track_counts is set to true. In the default

60

https://www.postgresql.org/docs/current/app-postgres.html
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-VACUUM-MULTIXACT-FREEZE-MIN-AGE
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-VACUUM-MULTIXACT-FREEZE-TABLE-AGE
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#GUC-AUTOVACUUM-MULTIXACT-FREEZE-MAX-AGE
https://www.postgresql.org/docs/current/runtime-config-statistics.html#GUC-TRACK-COUNTS

configuration, autovacuuming is enabled and the related configuration parameters are appropriately set.

The “autovacuum daemon” actually consists of multiple processes. There is a persistent daemon process,
called the autovacuum launcher, which is in charge of starting autovacuum worker processes for all
databases. The launcher will distribute the work across time, attempting to start one worker within each
database every autovacuum_naptime seconds. (Therefore, if the installation has N databases, a new worker
will be launched every autovacuum_naptime/N seconds.) A maximum of autovacuum_max_workers worker
processes are allowed to run at the same time. If there are more than autovacuum_max_workers databases to
be processed, the next database will be processed as soon as the first worker finishes. Each worker process
will check each table within its database and execute VACUUM and/or ANALYZE as needed.
log_autovacuum_min_duration can be set to monitor autovacuum workers' activity.

If several large tables all become eligible for vacuuming in a short amount of time, all autovacuum workers
might become occupied with vacuuming those tables for a long period. This would result in other tables and
databases not being vacuumed until a worker becomes available. There is no limit on how many workers
might be in a single database, but workers do try to avoid repeating work that has already been done by
other workers. Note that the number of running workers does not count towards max_connections or
superuser_reserved_connections limits.

Tables whose relfrozenxid value is more than autovacuum_freeze_max_age transactions old are always
vacuumed (this also applies to those tables whose freeze max age has been modified via storage
parameters; see below). Otherwise, if the number of tuples obsoleted since the last VACUUM exceeds the
“vacuum threshold”, the table is vacuumed. The vacuum threshold is defined as:

vacuum threshold = vacuum base threshold + vacuum scale factor * number of tuples

where the vacuum base threshold is autovacuum_vacuum_threshold, the vacuum scale factor is
autovacuum_vacuum_scale_factor, and the number of tuples is pg_class.reltuples.

The table is also vacuumed if the number of tuples inserted since the last vacuum has exceeded the defined
insert threshold, which is defined as:

vacuum insert threshold = vacuum base insert threshold + vacuum insert scale factor *
number of tuples

where the vacuum insert base threshold is autovacuum_vacuum_insert_threshold, and vacuum insert scale
factor is autovacuum_vacuum_insert_scale_factor. Such vacuums may allow portions of the table to be
marked as all visible and also allow tuples to be frozen, which can reduce the work required in subsequent
vacuums. For tables which receive INSERT operations but no or almost no UPDATE/DELETE operations, it may
be beneficial to lower the table’s autovacuum_freeze_min_age as this may allow tuples to be frozen by
earlier vacuums. The number of obsolete tuples and the number of inserted tuples are obtained from the
cumulative statistics system; it is a semi-accurate count updated by each UPDATE, DELETE and INSERT
operation. (It is only semi-accurate because some information might be lost under heavy load.) If the
relfrozenxid value of the table is more than vacuum_freeze_table_age transactions old, an aggressive
vacuum is performed to freeze old tuples and advance relfrozenxid; otherwise, only pages that have been
modified since the last vacuum are scanned.

For analyze, a similar condition is used: the threshold, defined as:

analyze threshold = analyze base threshold + analyze scale factor * number of tuples

is compared to the total number of tuples inserted, updated, or deleted since the last ANALYZE.

Partitioned tables are not processed by autovacuum. Statistics should be collected by running a manual
ANALYZE when it is first populated, and again whenever the distribution of data in its partitions changes
significantly.

61

https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#GUC-AUTOVACUUM-NAPTIME
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#GUC-AUTOVACUUM-MAX-WORKERS
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-AUTOVACUUM-MIN-DURATION
https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-MAX-CONNECTIONS
https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-SUPERUSER-RESERVED-CONNECTIONS
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#GUC-AUTOVACUUM-FREEZE-MAX-AGE
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-THRESHOLD
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-SCALE-FACTOR
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-INSERT-THRESHOLD
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-INSERT-SCALE-FACTOR
https://www.postgresql.org/docs/current/sql-createtable.html#RELOPTION-AUTOVACUUM-FREEZE-MIN-AGE

Temporary tables cannot be accessed by autovacuum. Therefore, appropriate vacuum and analyze
operations should be performed via session SQL commands.

The default thresholds and scale factors are taken from postgresql.conf, but it is possible to override them
(and many other autovacuum control parameters) on a per-table basis; see Storage Parameters for more
information. If a setting has been changed via a table’s storage parameters, that value is used when
processing that table; otherwise the global settings are used. See Section 20.10 for more details on the
global settings.

When multiple workers are running, the autovacuum cost delay parameters (see Section 20.4.4) are
“balanced” among all the running workers, so that the total I/O impact on the system is the same
regardless of the number of workers actually running. However, any workers processing tables whose per-
table autovacuum_vacuum_cost_delay or autovacuum_vacuum_cost_limit storage parameters have been set
are not considered in the balancing algorithm.

Autovacuum workers generally don’t block other commands. If a process attempts to acquire a lock that
conflicts with the SHARE UPDATE EXCLUSIVE lock held by autovacuum, lock acquisition will interrupt the
autovacuum. For conflicting lock modes, see Table 13.2. However, if the autovacuum is running to prevent
transaction ID wraparound (i.e., the autovacuum query name in the pg_stat_activity view ends with (to
prevent wraparound)), the autovacuum is not automatically interrupted.

Warning
Regularly running commands that acquire locks conflicting with a SHARE UPDATE EXCLUSIVE lock (e.g.,
ANALYZE) can effectively prevent autovacuums from ever completing.

Routine Reindexing
In some situations it is worthwhile to rebuild indexes periodically with the REINDEX command or a series of
individual rebuilding steps.

B-tree index pages that have become completely empty are reclaimed for re-use. However, there is still a
possibility of inefficient use of space: if all but a few index keys on a page have been deleted, the page
remains allocated. Therefore, a usage pattern in which most, but not all, keys in each range are eventually
deleted will see poor use of space. For such usage patterns, periodic reindexing is recommended.

The potential for bloat in non-B-tree indexes has not been well researched. It is a good idea to periodically
monitor the index’s physical size when using any non-B-tree index type.

Also, for B-tree indexes, a freshly-constructed index is slightly faster to access than one that has been
updated many times because logically adjacent pages are usually also physically adjacent in a newly built
index. (This consideration does not apply to non-B-tree indexes.) It might be worthwhile to reindex
periodically just to improve access speed.

REINDEX can be used safely and easily in all cases. This command requires an ACCESS EXCLUSIVE lock by
default, hence it is often preferable to execute it with its CONCURRENTLY option, which requires only a SHARE
UPDATE EXCLUSIVE lock.

Log File Maintenance
It is a good idea to save the database server’s log output somewhere, rather than just discarding it via
/dev/null. The log output is invaluable when diagnosing problems.Log output tends to be voluminous
(especially at higher debug levels) so you won’t want to save it indefinitely. You need to rotate the log files
so that new log files are started and old ones removed after a reasonable period of time.

If you simply direct the stderr of postgres into a file, you will have log output, but the only way to truncate
the log file is to stop and restart the server. This might be acceptable if you are using PostgreSQL in a
development environment, but few production servers would find this behavior acceptable.

A better approach is to send the server’s stderr output to some type of log rotation program. There is a

62

https://www.postgresql.org/docs/current/sql-createtable.html#SQL-CREATETABLE-STORAGE-PARAMETERS
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html
https://www.postgresql.org/docs/current/runtime-config-resource.html#RUNTIME-CONFIG-RESOURCE-VACUUM-COST
https://www.postgresql.org/docs/current/explicit-locking.html#TABLE-LOCK-COMPATIBILITY
https://www.postgresql.org/docs/current/sql-reindex.html
https://www.postgresql.org/docs/current/sql-reindex.html

built-in log rotation facility, which you can use by setting the configuration parameter logging_collector to
true in postgresql.conf. You can also use this approach to capture the log data in machine readable CSV
(comma-separated values) format.

Alternatively, you might prefer to use an external log rotation program if you have one that you are already
using with other server software. For example, the rotatelogs tool included in the Apache distribution can be
used with PostgreSQL. One way to do this is to pipe the server’s stderr output to the desired program. If
you start the server with pg_ctl, then stderr is already redirected to stdout, so you just need a pipe
command, for example:

pg_ctl start | rotatelogs /var/log/pgsql_log 86400

You can combine these approaches by setting up logrotate to collect log files produced by PostgreSQL built-
in logging collector. In this case, the logging collector defines the names and location of the log files, while
logrotate periodically archives these files. When initiating log rotation, logrotate must ensure that the
application sends further output to the new file. This is commonly done with a postrotate script that sends
a SIGHUP signal to the application, which then reopens the log file. In PostgreSQL, you can run pg_ctl with
the logrotate option instead. When the server receives this command, the server either switches to a new
log file or reopens the existing file, depending on the logging configuration.

Note
When using static log file names, the server might fail to reopen the log file if the max open file limit is
reached or a file table overflow occurs. In this case, log messages are sent to the old log file until a
successful log rotation. If logrotate is configured to compress the log file and delete it, the server may
lose the messages logged in this time frame. To avoid this issue, you can configure the logging
collector to dynamically assign log file names and use a prerotate script to ignore open log files.

Another production-grade approach to managing log output is to send it to syslog and let syslog deal with
file rotation. To do this, set the configuration parameter log_destination to syslog (to log to syslog only) in
postgresql.conf. Then you can send a SIGHUP signal to the syslog daemon whenever you want to force it to
start writing a new log file. If you want to automate log rotation, the logrotate program can be configured to
work with log files from syslog.

On many systems, however, syslog is not very reliable, particularly with large log messages; it might truncate
or drop messages just when you need them the most. Also, on Linux, syslog will flush each message to disk,
yielding poor performance. (You can use a “-” at the start of the file name in the syslog configuration file
to disable syncing.)

Note that all the solutions described above take care of starting new log files at configurable intervals, but
they do not handle deletion of old, no-longer-useful log files. You will probably want to set up a batch job to
periodically delete old log files. Another possibility is to configure the rotation program so that old log files
are overwritten cyclically.

pgBadger is an external project that does sophisticated log file analysis. check_postgres provides Nagios
alerts when important messages appear in the log files, as well as detection of many other extraordinary
conditions.

High Availability, Load Balancing, and Replication

Comparison of Different Solutions

Shared Disk Failover

Shared disk failover avoids synchronization overhead by having only one copy of the database. It uses a
single disk array that is shared by multiple servers. If the main database server fails, the standby server is able
to mount and start the database as though it were recovering from a database crash. This allows rapid
failover with no data loss.

63

https://pgbadger.darold.net/
https://bucardo.org/check_postgres/

Shared hardware functionality is common in network storage devices. Using a network file system is also
possible, though care must be taken that the file system has full POSIX behavior . One significant limitation
of this method is that if the shared disk array fails or becomes corrupt, the primary and standby servers are
both nonfunctional. Another issue is that the standby server should never access the shared storage while
the primary server is running.

File System (Block Device) Replication

A modified version of shared hardware functionality is file system replication, where all changes to a file
system are mirrored to a file system residing on another computer. The only restriction is that the mirroring
must be done in a way that ensures the standby server has a consistent copy of the file system — specifically,
writes to the standby must be done in the same order as those on the primary. DRBD is a popular file system
replication solution for Linux.

Write-Ahead Log Shipping

Warm and hot standby servers can be kept current by reading a stream of write-ahead log (WAL) records. If
the main server fails, the standby contains almost all of the data of the main server, and can be quickly made
the new primary database server. This can be synchronous or asynchronous and can only be done for the
entire database server.

A standby server can be implemented using file-based log shipping or streaming replication, or a
combination of both. For information on hot standby

Logical Replication

Logical replication allows a database server to send a stream of data modifications to another server.
IvorySQL logical replication constructs a stream of logical data modifications from the WAL. Logical
replication allows replication of data changes on a per-table basis. In addition, a server that is publishing its
own changes can also subscribe to changes from another server, allowing data to flow in multiple directions.
For more information on logical replication. Through the logical decoding interface , third-party extensions
can also provide similar functionality.

Trigger-Based Primary-Standby Replication

A trigger-based replication setup typically funnels data modification queries to a designated primary server.
Operating on a per-table basis, the primary server sends data changes (typically) asynchronously to the
standby servers. Standby servers can answer queries while the primary is running, and may allow some local
data changes or write activity. This form of replication is often used for offloading large analytical or data
warehouse queries.

Slony-I is an example of this type of replication, with per-table granularity, and support for multiple standby
servers. Because it updates the standby server asynchronously (in batches), there is possible data loss during
fail over.

SQL-Based Replication Middleware

With SQL-based replication middleware, a program intercepts every SQL query and sends it to one or all
servers. Each server operates independently. Read-write queries must be sent to all servers, so that every
server receives any changes. But read-only queries can be sent to just one server, allowing the read workload
to be distributed among them.

If queries are simply broadcast unmodified, functions like random(), CURRENT_TIMESTAMP, and sequences can
have different values on different servers. This is because each server operates independently, and because
SQL queries are broadcast rather than actual data changes. If this is unacceptable, either the middleware or
the application must determine such values from a single source and then use those values in write queries.
Care must also be taken that all transactions either commit or abort on all servers, perhaps using two-phase
commit (PREPARE TRANSACTION and COMMIT PREPARED). Pgpool-II and Continuent Tungsten are
examples of this type of replication.

64

https://www.postgresql.org/docs/current/sql-prepare-transaction.html
https://www.postgresql.org/docs/current/sql-commit-prepared.html

Asynchronous Multimaster Replication

For servers that are not regularly connected or have slow communication links, like laptops or remote
servers, keeping data consistent among servers is a challenge. Using asynchronous multimaster replication,
each server works independently, and periodically communicates with the other servers to identify
conflicting transactions. The conflicts can be resolved by users or conflict resolution rules. Bucardo is an
example of this type of replication.

Synchronous Multimaster Replication

In synchronous multimaster replication, each server can accept write requests, and modified data is
transmitted from the original server to every other server before each transaction commits. Heavy write
activity can cause excessive locking and commit delays, leading to poor performance. Read requests can be
sent to any server. Some implementations use shared disk to reduce the communication overhead.
Synchronous multimaster replication is best for mostly read workloads, though its big advantage is that any
server can accept write requests — there is no need to partition workloads between primary and standby
servers, and because the data changes are sent from one server to another, there is no problem with non-
deterministic functions like random().

IvorySQL does not offer this type of replication, though PostgreSQL two-phase commit (PREPARE
TRANSACTION and COMMIT PREPARED) can be used to implement this in application code or middleware.

The following table summarizes the capabilities of each of these scenarios.

Feature Shared
Disk

File
System
Repl.

Write-
Ahead Log
Shipping

Logical
Repl.

Trigger-
Based
Repl.

SQL Repl.
Middle-
ware

Async. MM
Repl.

Sync. MM
Repl.

Popular
examples

NAS DRBD built-in
streaming
repl.

built-in
logical
repl.,
pglogical

Londiste,
Slony

pgpool-II Bucardo

Comm.
method

shared
disk

disk
blocks

WAL logical
decoding

table rows SQL table rows table rows
and row
locks

No special
hardware
required

• • • • • • •

Allows
multiple
primary
servers

• • • •

No
overhead
on primary

• • • •

No waiting
for
multiple
servers

• with sync
off

with sync
off

• •

Primary
failure will
never lose
data

• • with sync
on

with sync
on

• •

Replicas
accept
read-only
queries

with hot
standby

• • • • •

Per-table
granularity

• • • •

65

https://www.postgresql.org/docs/current/sql-prepare-transaction.html
https://www.postgresql.org/docs/current/sql-prepare-transaction.html
https://www.postgresql.org/docs/current/sql-commit-prepared.html

No conflict
resolution
necessary

• • • • • •

There are a few solutions that do not fit into the above categories:

• Data Partitioning

Data partitioning splits tables into data sets. Each set can be modified by only
one server. For example, data can be partitioned by offices, e.g., London and
Paris, with a server in each office. If queries combining London and Paris data are
necessary, an application can query both servers, or primary/standby replication
can be used to keep a read-only copy of the other office's data on each server.

• Multiple-Server Parallel Query Execution

Many of the above solutions allow multiple servers to handle multiple queries, but
none allow a single query to use multiple servers to complete faster. This solution
allows multiple servers to work concurrently on a single query. It is usually
accomplished by splitting the data among servers and having each server execute its
part of the query and return results to a central server where they are combined
and returned to the user. This can be implemented using the PL/Proxy tool set.

Log-Shipping Standby Servers

Planning

It is usually wise to create the primary and standby servers so that they are as similar as possible, at least
from the perspective of the database server. In particular, the path names associated with tablespaces will
be passed across unmodified, so both primary and standby servers must have the same mount paths for
tablespaces if that feature is used. Keep in mind that if CREATE TABLESPACE is executed on the primary, any
new mount point needed for it must be created on the primary and all standby servers before the command
is executed. Hardware need not be exactly the same, but experience shows that maintaining two identical
systems is easier than maintaining two dissimilar ones over the lifetime of the application and system. In any
case the hardware architecture must be the same — shipping from, say, a 32-bit to a 64-bit system will not
work.

In general, log shipping between servers running different major IvorySQL release levels is not possible. It is
the policy of the IvorySQL Global Development Group not to make changes to disk formats during minor
release upgrades, so it is likely that running different minor release levels on primary and standby servers will
work successfully. However, no formal support for that is offered and you are advised to keep primary and
standby servers at the same release level as much as possible. When updating to a new minor release, the
safest policy is to update the standby servers first — a new minor release is more likely to be able to read
WAL files from a previous minor release than vice versa.

Standby Server Operation

A server enters standby mode if a standby.signal file exists in the data directory when the server is started.

In standby mode, the server continuously applies WAL received from the primary server. The standby server
can read WAL from a WAL archive (see restore_command) or directly from the primary over a TCP
connection (streaming replication). The standby server will also attempt to restore any WAL found in the
standby cluster’s pg_wal directory. That typically happens after a server restart, when the standby replays
again WAL that was streamed from the primary before the restart, but you can also manually copy files to
pg_wal at any time to have them replayed.

At startup, the standby begins by restoring all WAL available in the archive location, calling restore_command.

66

https://www.postgresql.org/docs/current/sql-createtablespace.html
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-RESTORE-COMMAND

Once it reaches the end of WAL available there and restore_command fails, it tries to restore any WAL
available in the pg_wal directory. If that fails, and streaming replication has been configured, the standby
tries to connect to the primary server and start streaming WAL from the last valid record found in archive or
pg_wal. If that fails or streaming replication is not configured, or if the connection is later disconnected, the
standby goes back to step 1 and tries to restore the file from the archive again. This loop of retries from the
archive, pg_wal, and via streaming replication goes on until the server is stopped or failover is triggered by a
trigger file.

Standby mode is exited and the server switches to normal operation when pg_ctl promote is run,
pg_promote() is called, or a trigger file is found (promote_trigger_file). Before failover, any WAL
immediately available in the archive or in pg_wal will be restored, but no attempt is made to connect to the
primary.

Preparing the Primary for Standby Servers

Set up continuous archiving on the primary to an archive directory accessible from the standby.The archive
location should be accessible from the standby even when the primary is down, i.e., it should reside on the
standby server itself or another trusted server, not on the primary server.

If you want to use streaming replication, set up authentication on the primary server to allow replication
connections from the standby server(s); that is, create a role and provide a suitable entry or entries in
pg_hba.conf with the database field set to replication. Also ensure max_wal_senders is set to a sufficiently
large value in the configuration file of the primary server. If replication slots will be used, ensure that
max_replication_slots is set sufficiently high as well.

Setting Up a Standby Server

To set up the standby server, restore the base backup taken from primary server . Create a file
standby.signal in the standby’s cluster data directory. Set restore_command to a simple command to
copy files from the WAL archive. If you plan to have multiple standby servers for high availability purposes,
make sure that recovery_target_timeline is set to latest (the default), to make the standby server follow
the timeline change that occurs at failover to another standby.

Note
restore_command should return immediately if the file does not exist; the server will retry the
command again if necessary.

If you want to use streaming replication, fill in primary_conninfo with a libpq connection string, including the
host name (or IP address) and any additional details needed to connect to the primary server. If the primary
needs a password for authentication, the password needs to be specified in primary_conninfo as well.

If you’re setting up the standby server for high availability purposes, set up WAL archiving, connections and
authentication like the primary server, because the standby server will work as a primary server after failover.

If you’re using a WAL archive, its size can be minimized using the archive_cleanup_command parameter to
remove files that are no longer required by the standby server. The pg_archivecleanup utility is designed
specifically to be used with archive_cleanup_command in typical single-standby configurations, see
pg_archivecleanup. Note however, that if you’re using the archive for backup purposes, you need to retain
files needed to recover from at least the latest base backup, even if they’re no longer needed by the
standby.

A simple example of configuration is:

primary_conninfo = 'host=192.168.1.50 port=5432 user=foo password=foopass options=''-c
wal_sender_timeout=5000'''
restore_command = 'cp /path/to/archive/%f %p'
archive_cleanup_command = 'pg_archivecleanup /path/to/archive %r'

67

https://www.postgresql.org/docs/current/warm-standby.html#FILE-STANDBY-SIGNAL
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-RESTORE-COMMAND
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-RESTORE-COMMAND
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-PRIMARY-CONNINFO
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-PRIMARY-CONNINFO
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-CLEANUP-COMMAND
https://www.postgresql.org/docs/current/pgarchivecleanup.html

You can have any number of standby servers, but if you use streaming replication, make sure you set
max_wal_senders high enough in the primary to allow them to be connected simultaneously.

Streaming Replication

Streaming replication allows a standby server to stay more up-to-date than is possible with file-based log
shipping. The standby connects to the primary, which streams WAL records to the standby as they’re
generated, without waiting for the WAL file to be filled.

Streaming replication is asynchronous by default , in which case there is a small delay between committing
a transaction in the primary and the changes becoming visible in the standby. This delay is however much
smaller than with file-based log shipping, typically under one second assuming the standby is powerful
enough to keep up with the load. With streaming replication, archive_timeout is not required to reduce the
data loss window.

If you use streaming replication without file-based continuous archiving, the server might recycle old WAL
segments before the standby has received them. If this occurs, the standby will need to be reinitialized from
a new base backup. You can avoid this by setting wal_keep_size to a value large enough to ensure that WAL
segments are not recycled too early, or by configuring a replication slot for the standby. If you set up a WAL
archive that’s accessible from the standby, these solutions are not required, since the standby can always
use the archive to catch up provided it retains enough segments.

To use streaming replication, set up a file-based log-shipping standby server. The step that turns a file-based
log-shipping standby into streaming replication standby is setting the primary_conninfo setting to point to
the primary server. Set listen_addresses and authentication options (see pg_hba.conf) on the primary so
that the standby server can connect to the replication pseudo-database on the primary server.

On systems that support the keepalive socket option, setting tcp_keepalives_idle, tcp_keepalives_interval
and tcp_keepalives_count helps the primary promptly notice a broken connection.

Set the maximum number of concurrent connections from the standby servers (see max_wal_senders for
details).

When the standby is started and primary_conninfo is set correctly, the standby will connect to the primary
after replaying all WAL files available in the archive. If the connection is established successfully, you will see
a walreceiver in the standby, and a corresponding walsender process in the primary.

Authentication

It is very important that the access privileges for replication be set up so that only trusted users can read the
WAL stream, because it is easy to extract privileged information from it. Standby servers must authenticate
to the primary as an account that has the REPLICATION privilege or a superuser. It is recommended to create
a dedicated user account with REPLICATION and LOGIN privileges for replication. While REPLICATION privilege
gives very high permissions, it does not allow the user to modify any data on the primary system, which the
SUPERUSER privilege does.

Client authentication for replication is controlled by a pg_hba.conf record specifying replication in the
database field. For example, if the standby is running on host IP 192.168.1.100 and the account name for
replication is foo, the administrator can add the following line to the pg_hba.conf file on the primary:

Allow the user "foo" from host 192.168.1.100 to connect to the primary
as a replication standby if the user's password is correctly supplied.
#
TYPE DATABASE USER ADDRESS METHOD
host replication foo 192.168.1.100/32 md5

The host name and port number of the primary, connection user name, and password are specified in the
primary_conninfo. The password can also be set in the ~/.pgpass file on the standby (specify replication in
the database field). For example, if the primary is running on host IP 192.168.1.50, port 5432, the account

68

https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-LISTEN-ADDRESSES
https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-TCP-KEEPALIVES-IDLE
https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-TCP-KEEPALIVES-INTERVAL
https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-TCP-KEEPALIVES-COUNT
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-MAX-WAL-SENDERS
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-PRIMARY-CONNINFO

name for replication is foo, and the password is foopass, the administrator can add the following line to the
postgresql.conf file on the standby:

The standby connects to the primary that is running on host 192.168.1.50
and port 5432 as the user "foo" whose password is "foopass".
primary_conninfo = 'host=192.168.1.50 port=5432 user=foo password=foopass'

Monitoring

An important health indicator of streaming replication is the amount of WAL records generated in the
primary, but not yet applied in the standby. You can calculate this lag by comparing the current WAL write
location on the primary with the last WAL location received by the standby. These locations can be retrieved
using pg_current_wal_lsn on the primary and pg_last_wal_receive_lsn on the standby, respectively . The
last WAL receive location in the standby is also displayed in the process status of the WAL receiver process,
displayed using the ps command .

You can retrieve a list of WAL sender processes via the pg_stat_replication view. Large differences between
pg_current_wal_lsn and the view’s sent_lsn field might indicate that the primary server is under heavy
load, while differences between sent_lsn and pg_last_wal_receive_lsn on the standby might indicate
network delay, or that the standby is under heavy load.

On a hot standby, the status of the WAL receiver process can be retrieved via the pg_stat_wal_receiver
view. A large difference between pg_last_wal_replay_lsn and the view’s flushed_lsn indicates that WAL is
being received faster than it can be replayed.

Replication Slots

Replication slots provide an automated way to ensure that the primary does not remove WAL segments until
they have been received by all standbys, and that the primary does not remove rows which could cause a
recovery conflict even when the standby is disconnected.

In lieu of using replication slots, it is possible to prevent the removal of old WAL segments using
wal_keep_size, or by storing the segments in an archive using archive_command or archive_library.
However, these methods often result in retaining more WAL segments than required, whereas replication
slots retain only the number of segments known to be needed. On the other hand, replication slots can
retain so many WAL segments that they fill up the space allocated for pg_wal; max_slot_wal_keep_size limits
the size of WAL files retained by replication slots.

Similarly, hot_standby_feedback and vacuum_defer_cleanup_age provide protection against relevant rows
being removed by vacuum, but the former provides no protection during any time period when the standby
is not connected, and the latter often needs to be set to a high value to provide adequate protection.
Replication slots overcome these disadvantages.

Querying And Manipulating Replication Slots

Each replication slot has a name, which can contain lower-case letters, numbers, and the underscore
character.

Existing replication slots and their state can be seen in the pg_replication_slots view.

Slots can be created and dropped either via the streaming replication protocol or via SQL functions .

Configuration Example

You can create a replication slot like this:

postgres=# SELECT * FROM pg_create_physical_replication_slot('node_a_slot');
 slot_name | lsn

69

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-WAL-RECEIVER-VIEW
https://www.postgresql.org/docs/current/hot-standby.html#HOT-STANDBY-CONFLICT
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-WAL-KEEP-SIZE
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-COMMAND
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-LIBRARY
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-MAX-SLOT-WAL-KEEP-SIZE
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-HOT-STANDBY-FEEDBACK
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-VACUUM-DEFER-CLEANUP-AGE
https://www.postgresql.org/docs/current/view-pg-replication-slots.html

-------------+-----
 node_a_slot |

postgres=# SELECT slot_name, slot_type, active FROM pg_replication_slots;
 slot_name | slot_type | active
-------------+-----------+--------
 node_a_slot | physical | f
(1 row)

To configure the standby to use this slot, primary_slot_name should be configured on the standby. Here is a
simple example:

primary_conninfo = 'host=192.168.1.50 port=5432 user=foo password=foopass'
primary_slot_name = 'node_a_slot'

Cascading Replication

The cascading replication feature allows a standby server to accept replication connections and stream WAL
records to other standbys, acting as a relay. This can be used to reduce the number of direct connections to
the primary and also to minimize inter-site bandwidth overheads.

A standby acting as both a receiver and a sender is known as a cascading standby. Standbys that are more
directly connected to the primary are known as upstream servers, while those standby servers further away
are downstream servers. Cascading replication does not place limits on the number or arrangement of
downstream servers, though each standby connects to only one upstream server which eventually links to a
single primary server.

A cascading standby sends not only WAL records received from the primary but also those restored from the
archive. So even if the replication connection in some upstream connection is terminated, streaming
replication continues downstream for as long as new WAL records are available.

Cascading replication is currently asynchronous. Synchronous replication settings have no effect on
cascading replication at present.

Hot standby feedback propagates upstream, whatever the cascaded arrangement.

If an upstream standby server is promoted to become the new primary, downstream servers will continue to
stream from the new primary if recovery_target_timeline is set to 'latest' (the default).

To use cascading replication, set up the cascading standby so that it can accept replication connections
(that is, set max_wal_senders and hot_standby, and configure host-based authentication). You will also
need to set primary_conninfo in the downstream standby to point to the cascading standby.

Synchronous Replication

IvorySQL streaming replication is asynchronous by default. If the primary server crashes then some
transactions that were committed may not have been replicated to the standby server, causing data loss.
The amount of data loss is proportional to the replication delay at the time of failover.

Synchronous replication offers the ability to confirm that all changes made by a transaction have been
transferred to one or more synchronous standby servers. This extends that standard level of durability
offered by a transaction commit. This level of protection is referred to as 2-safe replication in computer
science theory, and group-1-safe (group-safe and 1-safe) when synchronous_commit is set to remote_write.

When requesting synchronous replication, each commit of a write transaction will wait until confirmation is
received that the commit has been written to the write-ahead log on disk of both the primary and standby

70

https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-MAX-WAL-SENDERS
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-HOT-STANDBY
https://www.postgresql.org/docs/current/auth-pg-hba-conf.html

server. The only possibility that data can be lost is if both the primary and the standby suffer crashes at the
same time. This can provide a much higher level of durability, though only if the sysadmin is cautious about
the placement and management of the two servers. Waiting for confirmation increases the user’s
confidence that the changes will not be lost in the event of server crashes but it also necessarily increases
the response time for the requesting transaction. The minimum wait time is the round-trip time between
primary and standby.

Read-only transactions and transaction rollbacks need not wait for replies from standby servers.
Subtransaction commits do not wait for responses from standby servers, only top-level commits. Long
running actions such as data loading or index building do not wait until the very final commit message. All
two-phase commit actions require commit waits, including both prepare and commit.

A synchronous standby can be a physical replication standby or a logical replication subscriber. It can also
be any other physical or logical WAL replication stream consumer that knows how to send the appropriate
feedback messages. Besides the built-in physical and logical replication systems, this includes special
programs such as pg_receivewal and pg_recvlogical as well as some third-party replication systems and
custom programs. Check the respective documentation for details on synchronous replication support.

Basic Configuration

Once streaming replication has been configured, configuring synchronous replication requires only one
additional configuration step: synchronous_standby_names must be set to a non-empty value.
synchronous_commit must also be set to on, but since this is the default value, typically no change is
required.This configuration will cause each commit to wait for confirmation that the standby has written the
commit record to durable storage. synchronous_commit can be set by individual users, so it can be
configured in the configuration file, for particular users or databases, or dynamically by applications, in order
to control the durability guarantee on a per-transaction basis.

After a commit record has been written to disk on the primary, the WAL record is then sent to the standby.
The standby sends reply messages each time a new batch of WAL data is written to disk, unless
wal_receiver_status_interval is set to zero on the standby. In the case that synchronous_commit is set to
remote_apply, the standby sends reply messages when the commit record is replayed, making the
transaction visible. If the standby is chosen as a synchronous standby, according to the setting of
synchronous_standby_names on the primary, the reply messages from that standby will be considered along
with those from other synchronous standbys to decide when to release transactions waiting for confirmation
that the commit record has been received. These parameters allow the administrator to specify which
standby servers should be synchronous standbys. Note that the configuration of synchronous replication is
mainly on the primary. Named standbys must be directly connected to the primary; the primary knows
nothing about downstream standby servers using cascaded replication.

Setting synchronous_commit to remote_write will cause each commit to wait for confirmation that the
standby has received the commit record and written it out to its own operating system, but not for the data
to be flushed to disk on the standby. This setting provides a weaker guarantee of durability than on does: the
standby could lose the data in the event of an operating system crash, though not a PostgreSQL crash.
However, it’s a useful setting in practice because it can decrease the response time for the transaction.
Data loss could only occur if both the primary and the standby crash and the database of the primary gets
corrupted at the same time.

Setting synchronous_commit to remote_apply will cause each commit to wait until the current synchronous
standbys report that they have replayed the transaction, making it visible to user queries. In simple cases,
this allows for load balancing with causal consistency.

Users will stop waiting if a fast shutdown is requested. However, as when using asynchronous replication,
the server will not fully shutdown until all outstanding WAL records are transferred to the currently
connected standby servers.

Multiple Synchronous Standbys

Synchronous replication supports one or more synchronous standby servers; transactions will wait until all
the standby servers which are considered as synchronous confirm receipt of their data. The number of
synchronous standbys that transactions must wait for replies from is specified in
synchronous_standby_names. This parameter also specifies a list of standby names and the method (FIRST
and ANY) to choose synchronous standbys from the listed ones.

71

https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-SYNCHRONOUS-STANDBY-NAMES

The method FIRST specifies a priority-based synchronous replication and makes transaction commits wait
until their WAL records are replicated to the requested number of synchronous standbys chosen based on
their priorities. The standbys whose names appear earlier in the list are given higher priority and will be
considered as synchronous. Other standby servers appearing later in this list represent potential
synchronous standbys. If any of the current synchronous standbys disconnects for whatever reason, it will be
replaced immediately with the next-highest-priority standby.

An example of synchronous_standby_names for a priority-based multiple synchronous standbys is:

synchronous_standby_names = 'FIRST 2 (s1, s2, s3)'

In this example, if four standby servers s1, s2, s3 and s4 are running, the two standbys s1 and s2 will be
chosen as synchronous standbys because their names appear early in the list of standby names. s3 is a
potential synchronous standby and will take over the role of synchronous standby when either of s1 or s2
fails. s4 is an asynchronous standby since its name is not in the list.

The method ANY specifies a quorum-based synchronous replication and makes transaction commits wait
until their WAL records are replicated to at least the requested number of synchronous standbys in the list.

An example of synchronous_standby_names for a quorum-based multiple synchronous standbys is:

synchronous_standby_names = 'ANY 2 (s1, s2, s3)'

In this example, if four standby servers s1, s2, s3 and s4 are running, transaction commits will wait for replies
from at least any two standbys of s1, s2 and s3. s4 is an asynchronous standby since its name is not in the
list.

The synchronous states of standby servers can be viewed using the pg_stat_replication view.

Planning For Performance

Synchronous replication usually requires carefully planned and placed standby servers to ensure
applications perform acceptably. Waiting doesn’t utilize system resources, but transaction locks continue
to be held until the transfer is confirmed. As a result, incautious use of synchronous replication will reduce
performance for database applications because of increased response times and higher contention.

PostgreSQL allows the application developer to specify the durability level required via replication. This can
be specified for the system overall, though it can also be specified for specific users or connections, or even
individual transactions.

For example, an application workload might consist of: 10% of changes are important customer details,
while 90% of changes are less important data that the business can more easily survive if it is lost, such as
chat messages between users.

With synchronous replication options specified at the application level (on the primary) we can offer
synchronous replication for the most important changes, without slowing down the bulk of the total
workload. Application level options are an important and practical tool for allowing the benefits of
synchronous replication for high performance applications.

You should consider that the network bandwidth must be higher than the rate of generation of WAL data.

Planning For High Availability

synchronous_standby_names specifies the number and names of synchronous standbys that transaction
commits made when synchronous_commit is set to on, remote_apply or remote_write will wait for responses
from. Such transaction commits may never be completed if any one of synchronous standbys should crash.

The best solution for high availability is to ensure you keep as many synchronous standbys as requested.
This can be achieved by naming multiple potential synchronous standbys using

72

synchronous_standby_names.

In a priority-based synchronous replication, the standbys whose names appear earlier in the list will be used
as synchronous standbys. Standbys listed after these will take over the role of synchronous standby if one of
current ones should fail.

In a quorum-based synchronous replication, all the standbys appearing in the list will be used as candidates
for synchronous standbys. Even if one of them should fail, the other standbys will keep performing the role
of candidates of synchronous standby.

When a standby first attaches to the primary, it will not yet be properly synchronized. This is described as
catchup mode. Once the lag between standby and primary reaches zero for the first time we move to real-
time streaming state. The catch-up duration may be long immediately after the standby has been created. If
the standby is shut down, then the catch-up period will increase according to the length of time the standby
has been down. The standby is only able to become a synchronous standby once it has reached streaming
state. This state can be viewed using the pg_stat_replication view.

If primary restarts while commits are waiting for acknowledgment, those waiting transactions will be marked
fully committed once the primary database recovers. There is no way to be certain that all standbys have
received all outstanding WAL data at time of the crash of the primary. Some transactions may not show as
committed on the standby, even though they show as committed on the primary. The guarantee we offer is
that the application will not receive explicit acknowledgment of the successful commit of a transaction until
the WAL data is known to be safely received by all the synchronous standbys.

If you really cannot keep as many synchronous standbys as requested then you should decrease the number
of synchronous standbys that transaction commits must wait for responses from in
synchronous_standby_names (or disable it) and reload the configuration file on the primary server.

If the primary is isolated from remaining standby servers you should fail over to the best candidate of those
other remaining standby servers.

If you need to re-create a standby server while transactions are waiting, make sure that the commands
pg_backup_start() and pg_backup_stop() are run in a session with synchronous_commit = off, otherwise
those requests will wait forever for the standby to appear.

Continuous Archiving in Standby

When continuous WAL archiving is used in a standby, there are two different scenarios: the WAL archive can
be shared between the primary and the standby, or the standby can have its own WAL archive. When the
standby has its own WAL archive, set archive_mode to always, and the standby will call the archive command
for every WAL segment it receives, whether it’s by restoring from the archive or by streaming replication.
The shared archive can be handled similarly, but the archive_command or archive_library must test if the
file being archived exists already, and if the existing file has identical contents. This requires more care in the
archive_command or archive_library, as it must be careful to not overwrite an existing file with different
contents, but return success if the exactly same file is archived twice. And all that must be done free of race
conditions, if two servers attempt to archive the same file at the same time.

If archive_mode is set to on, the archiver is not enabled during recovery or standby mode. If the standby
server is promoted, it will start archiving after the promotion, but will not archive any WAL or timeline history
files that it did not generate itself. To get a complete series of WAL files in the archive, you must ensure that
all WAL is archived, before it reaches the standby. This is inherently true with file-based log shipping, as the
standby can only restore files that are found in the archive, but not if streaming replication is enabled. When
a server is not in recovery mode, there is no difference between on and always modes.

Failover

If the primary server fails then the standby server should begin failover procedures.

If the standby server fails then no failover need take place. If the standby server can be restarted, even some
time later, then the recovery process can also be restarted immediately, taking advantage of restartable
recovery. If the standby server cannot be restarted, then a full new standby server instance should be
created.

73

If the primary server fails and the standby server becomes the new primary, and then the old primary
restarts, you must have a mechanism for informing the old primary that it is no longer the primary. This is
sometimes known as STONITH (Shoot The Other Node In The Head), which is necessary to avoid situations
where both systems think they are the primary, which will lead to confusion and ultimately data loss.

Many failover systems use just two systems, the primary and the standby, connected by some kind of
heartbeat mechanism to continually verify the connectivity between the two and the viability of the primary.
It is also possible to use a third system (called a witness server) to prevent some cases of inappropriate
failover, but the additional complexity might not be worthwhile unless it is set up with sufficient care and
rigorous testing.

PostgreSQL does not provide the system software required to identify a failure on the primary and notify the
standby database server. Many such tools exist and are well integrated with the operating system facilities
required for successful failover, such as IP address migration.

Once failover to the standby occurs, there is only a single server in operation. This is known as a degenerate
state. The former standby is now the primary, but the former primary is down and might stay down. To
return to normal operation, a standby server must be recreated, either on the former primary system when it
comes up, or on a third, possibly new, system. The pg_rewind utility can be used to speed up this process on
large clusters. Once complete, the primary and standby can be considered to have switched roles. Some
people choose to use a third server to provide backup for the new primary until the new standby server is
recreated, though clearly this complicates the system configuration and operational processes.

So, switching from primary to standby server can be fast but requires some time to re-prepare the failover
cluster. Regular switching from primary to standby is useful, since it allows regular downtime on each system
for maintenance. This also serves as a test of the failover mechanism to ensure that it will really work when
you need it. Written administration procedures are advised.

To trigger failover of a log-shipping standby server, run pg_ctl promote, call pg_promote(), or create a trigger
file with the file name and path specified by the promote_trigger_file. If you’re planning to use pg_ctl
promote or to call pg_promote() to fail over, promote_trigger_file is not required. If you’re setting up the
reporting servers that are only used to offload read-only queries from the primary, not for high availability
purposes, you don’t need to promote it.

Hot Standby

Hot standby is the term used to describe the ability to connect to the server and run read-only queries while
the server is in archive recovery or standby mode. This is useful both for replication purposes and for
restoring a backup to a desired state with great precision. The term hot standby also refers to the ability of
the server to move from recovery through to normal operation while users continue running queries and/or
keep their connections open.

Running queries in hot standby mode is similar to normal query operation, though there are several usage
and administrative differences explained below.

User’s Overview

When the hot_standby parameter is set to true on a standby server, it will begin accepting connections once
the recovery has brought the system to a consistent state. All such connections are strictly read-only; not
even temporary tables may be written.

The data on the standby takes some time to arrive from the primary server so there will be a measurable
delay between primary and standby. Running the same query nearly simultaneously on both primary and
standby might therefore return differing results. We say that data on the standby is eventually consistent
with the primary. Once the commit record for a transaction is replayed on the standby, the changes made by
that transaction will be visible to any new snapshots taken on the standby. Snapshots may be taken at the
start of each query or at the start of each transaction, depending on the current transaction isolation level.

Transactions started during hot standby may issue the following commands:

• Query access: SELECT, COPY TO
• Cursor commands: DECLARE, FETCH, CLOSE

74

https://www.postgresql.org/docs/current/app-pgrewind.html
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-HOT-STANDBY

• Settings: SHOW, SET, RESET
• Transaction management commands:

◦ BEGIN, END, ABORT, START TRANSACTION
◦ SAVEPOINT, RELEASE, ROLLBACK TO SAVEPOINT
◦ EXCEPTION blocks and other internal subtransactions

• LOCK TABLE, though only when explicitly in one of these modes: ACCESS SHARE, ROW SHARE or ROW
EXCLUSIVE.

• Plans and resources: PREPARE, EXECUTE, DEALLOCATE, DISCARD
• Plugins and extensions: LOAD
• UNLISTEN

Transactions started during hot standby will never be assigned a transaction ID and cannot write to the
system write-ahead log. Therefore, the following actions will produce error messages:

• Data Manipulation Language (DML): INSERT, UPDATE, DELETE, COPY FROM, TRUNCATE. Note that there are no
allowed actions that result in a trigger being executed during recovery. This restriction applies even to
temporary tables, because table rows cannot be read or written without assigning a transaction ID,
which is currently not possible in a hot standby environment.

• Data Definition Language (DDL): CREATE, DROP, ALTER, COMMENT. This restriction applies even to temporary
tables, because carrying out these operations would require updating the system catalog tables.

• SELECT … FOR SHARE | UPDATE, because row locks cannot be taken without updating the underlying
data files.

• Rules on SELECT statements that generate DML commands.
• LOCK that explicitly requests a mode higher than ROW EXCLUSIVE MODE.
• LOCK in short default form, since it requests ACCESS EXCLUSIVE MODE.
• Transaction management commands that explicitly set non-read-only state:

◦ BEGIN READ WRITE, START TRANSACTION READ WRITE
◦ SET TRANSACTION READ WRITE, SET SESSION CHARACTERISTICS AS TRANSACTION READ WRITE
◦ SET transaction_read_only = off

• Two-phase commit commands: PREPARE TRANSACTION, COMMIT PREPARED, ROLLBACK PREPARED because
even read-only transactions need to write WAL in the prepare phase (the first phase of two phase
commit).

• Sequence updates: nextval(), setval()
• LISTEN, NOTIFY

In normal operation, “read-only” transactions are allowed to use LISTEN and NOTIFY, so hot standby
sessions operate under slightly tighter restrictions than ordinary read-only sessions. It is possible that some
of these restrictions might be loosened in a future release.

During hot standby, the parameter transaction_read_only is always true and may not be changed. But as
long as no attempt is made to modify the database, connections during hot standby will act much like any
other database connection. If failover or switchover occurs, the database will switch to normal processing
mode. Sessions will remain connected while the server changes mode. Once hot standby finishes, it will be
possible to initiate read-write transactions (even from a session begun during hot standby).

Users can determine whether hot standby is currently active for their session by issuing SHOW
in_hot_standby. (In server versions before 14, the in_hot_standby parameter did not exist; a workable
substitute method for older servers is SHOW transaction_read_only.) In addition, a set of functions allow
users to access information about the standby server. These allow you to write programs that are aware of
the current state of the database. These can be used to monitor the progress of recovery, or to allow you to
write complex programs that restore the database to particular states.

75

Handling Query Conflicts

The primary and standby servers are in many ways loosely connected. Actions on the primary will have an
effect on the standby. As a result, there is potential for negative interactions or conflicts between them. The
easiest conflict to understand is performance: if a huge data load is taking place on the primary then this will
generate a similar stream of WAL records on the standby, so standby queries may contend for system
resources, such as I/O.

There are also additional types of conflict that can occur with hot standby. These conflicts are hard conflicts
in the sense that queries might need to be canceled and, in some cases, sessions disconnected to resolve
them. The user is provided with several ways to handle these conflicts. Conflict cases include:

• Access Exclusive locks taken on the primary server, including both explicit LOCK commands and various
DDL actions, conflict with table accesses in standby queries.

• Dropping a tablespace on the primary conflicts with standby queries using that tablespace for
temporary work files.

• Dropping a database on the primary conflicts with sessions connected to that database on the standby.
• Application of a vacuum cleanup record from WAL conflicts with standby transactions whose snapshots

can still “see” any of the rows to be removed.
• Application of a vacuum cleanup record from WAL conflicts with queries accessing the target page on

the standby, whether or not the data to be removed is visible.

On the primary server, these cases simply result in waiting; and the user might choose to cancel either of the
conflicting actions. However, on the standby there is no choice: the WAL-logged action already occurred on
the primary so the standby must not fail to apply it. Furthermore, allowing WAL application to wait
indefinitely may be very undesirable, because the standby’s state will become increasingly far behind the
primary’s. Therefore, a mechanism is provided to forcibly cancel standby queries that conflict with to-be-
applied WAL records.

An example of the problem situation is an administrator on the primary server running DROP TABLE on a table
that is currently being queried on the standby server. Clearly the standby query cannot continue if the DROP
TABLE is applied on the standby. If this situation occurred on the primary, the DROP TABLE would wait until
the other query had finished. But when DROP TABLE is run on the primary, the primary doesn’t have
information about what queries are running on the standby, so it will not wait for any such standby queries.
The WAL change records come through to the standby while the standby query is still running, causing a
conflict. The standby server must either delay application of the WAL records (and everything after them,
too) or else cancel the conflicting query so that the DROP TABLE can be applied.

When a conflicting query is short, it’s typically desirable to allow it to complete by delaying WAL
application for a little bit; but a long delay in WAL application is usually not desirable. So the cancel
mechanism has parameters, max_standby_archive_delay and max_standby_streaming_delay, that define
the maximum allowed delay in WAL application. Conflicting queries will be canceled once it has taken longer
than the relevant delay setting to apply any newly-received WAL data. There are two parameters so that
different delay values can be specified for the case of reading WAL data from an archive (i.e., initial recovery
from a base backup or “catching up” a standby server that has fallen far behind) versus reading WAL data
via streaming replication.

In a standby server that exists primarily for high availability, it’s best to set the delay parameters relatively
short, so that the server cannot fall far behind the primary due to delays caused by standby queries.
However, if the standby server is meant for executing long-running queries, then a high or even infinite delay
value may be preferable. Keep in mind however that a long-running query could cause other sessions on the
standby server to not see recent changes on the primary, if it delays application of WAL records.

Once the delay specified by max_standby_archive_delay or max_standby_streaming_delay has been
exceeded, conflicting queries will be canceled. This usually results just in a cancellation error, although in
the case of replaying a DROP DATABASE the entire conflicting session will be terminated. Also, if the conflict is
over a lock held by an idle transaction, the conflicting session is terminated (this behavior might change in
the future).

Canceled queries may be retried immediately (after beginning a new transaction, of course). Since query
cancellation depends on the nature of the WAL records being replayed, a query that was canceled may well

76

https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-MAX-STANDBY-ARCHIVE-DELAY
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-MAX-STANDBY-STREAMING-DELAY

succeed if it is executed again.

Keep in mind that the delay parameters are compared to the elapsed time since the WAL data was received
by the standby server. Thus, the grace period allowed to any one query on the standby is never more than
the delay parameter, and could be considerably less if the standby has already fallen behind as a result of
waiting for previous queries to complete, or as a result of being unable to keep up with a heavy update load.

The most common reason for conflict between standby queries and WAL replay is “early cleanup”.
Normally, PostgreSQL allows cleanup of old row versions when there are no transactions that need to see
them to ensure correct visibility of data according to MVCC rules. However, this rule can only be applied for
transactions executing on the primary. So it is possible that cleanup on the primary will remove row versions
that are still visible to a transaction on the standby.

Experienced users should note that both row version cleanup and row version freezing will potentially
conflict with standby queries. Running a manual VACUUM FREEZE is likely to cause conflicts even on tables
with no updated or deleted rows.

Users should be clear that tables that are regularly and heavily updated on the primary server will quickly
cause cancellation of longer running queries on the standby. In such cases the setting of a finite value for
max_standby_archive_delay or max_standby_streaming_delay can be considered similar to setting
statement_timeout.

Remedial possibilities exist if the number of standby-query cancellations is found to be unacceptable. The
first option is to set the parameter hot_standby_feedback, which prevents VACUUM from removing recently-
dead rows and so cleanup conflicts do not occur. If you do this, you should note that this will delay cleanup
of dead rows on the primary, which may result in undesirable table bloat. However, the cleanup situation
will be no worse than if the standby queries were running directly on the primary server, and you are still
getting the benefit of off-loading execution onto the standby. If standby servers connect and disconnect
frequently, you might want to make adjustments to handle the period when hot_standby_feedback
feedback is not being provided. For example, consider increasing max_standby_archive_delay so that
queries are not rapidly canceled by conflicts in WAL archive files during disconnected periods. You should
also consider increasing max_standby_streaming_delay to avoid rapid cancellations by newly-arrived
streaming WAL entries after reconnection.

Another option is to increase vacuum_defer_cleanup_age on the primary server, so that dead rows will not
be cleaned up as quickly as they normally would be. This will allow more time for queries to execute before
they are canceled on the standby, without having to set a high max_standby_streaming_delay. However it is
difficult to guarantee any specific execution-time window with this approach, since
vacuum_defer_cleanup_age is measured in transactions executed on the primary server.

The number of query cancels and the reason for them can be viewed using the pg_stat_database_conflicts
system view on the standby server. The pg_stat_database system view also contains summary information.

Users can control whether a log message is produced when WAL replay is waiting longer than
deadlock_timeout for conflicts. This is controlled by the log_recovery_conflict_waits parameter.

Administrator’s Overview

If hot_standby is on in postgresql.conf (the default value) and there is a standby.signal file present, the
server will run in hot standby mode. However, it may take some time for hot standby connections to be
allowed, because the server will not accept connections until it has completed sufficient recovery to provide
a consistent state against which queries can run. During this period, clients that attempt to connect will be
refused with an error message. To confirm the server has come up, either loop trying to connect from the
application, or look for these messages in the server logs:

LOG: entering standby mode

... then some time later ...

77

https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-VACUUM-DEFER-CLEANUP-AGE
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-RECOVERY-CONFLICT-WAITS
https://www.postgresql.org/docs/current/warm-standby.html#FILE-STANDBY-SIGNAL

LOG: consistent recovery state reached
LOG: database system is ready to accept read-only connections

Consistency information is recorded once per checkpoint on the primary. It is not possible to enable hot
standby when reading WAL written during a period when wal_level was not set to replica or logical on the
primary. Reaching a consistent state can also be delayed in the presence of both of these conditions:

• A write transaction has more than 64 subtransactions
• Very long-lived write transactions

If you are running file-based log shipping ("warm standby"), you might need to wait until the next WAL file
arrives, which could be as long as the archive_timeout setting on the primary.

The settings of some parameters determine the size of shared memory for tracking transaction IDs, locks,
and prepared transactions. These shared memory structures must be no smaller on a standby than on the
primary in order to ensure that the standby does not run out of shared memory during recovery. For
example, if the primary had used a prepared transaction but the standby had not allocated any shared
memory for tracking prepared transactions, then recovery could not continue until the standby’s
configuration is changed. The parameters affected are:

• max_connections
• max_prepared_transactions
• max_locks_per_transaction
• max_wal_senders
• max_worker_processes

The easiest way to ensure this does not become a problem is to have these parameters set on the standbys
to values equal to or greater than on the primary. Therefore, if you want to increase these values, you should
do so on all standby servers first, before applying the changes to the primary server. Conversely, if you want
to decrease these values, you should do so on the primary server first, before applying the changes to all
standby servers. Keep in mind that when a standby is promoted, it becomes the new reference for the
required parameter settings for the standbys that follow it. Therefore, to avoid this becoming a problem
during a switchover or failover, it is recommended to keep these settings the same on all standby servers.

The WAL tracks changes to these parameters on the primary. If a hot standby processes WAL that indicates
that the current value on the primary is higher than its own value, it will log a warning and pause recovery,
for example:

WARNING: hot standby is not possible because of insufficient parameter settings
DETAIL: max_connections = 80 is a lower setting than on the primary server, where its
value was 100.
LOG: recovery has paused
DETAIL: If recovery is unpaused, the server will shut down.
HINT: You can then restart the server after making the necessary configuration
changes.

At that point, the settings on the standby need to be updated and the instance restarted before recovery can
continue. If the standby is not a hot standby, then when it encounters the incompatible parameter change, it
will shut down immediately without pausing, since there is then no value in keeping it up.

It is important that the administrator select appropriate settings for max_standby_archive_delay and
max_standby_streaming_delay. The best choices vary depending on business priorities. For example if the
server is primarily tasked as a High Availability server, then you will want low delay settings, perhaps even
zero, though that is a very aggressive setting. If the standby server is tasked as an additional server for
decision support queries then it might be acceptable to set the maximum delay values to many hours, or

78

https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-MAX-STANDBY-ARCHIVE-DELAY
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-MAX-STANDBY-STREAMING-DELAY

even -1 which means wait forever for queries to complete.

Transaction status "hint bits" written on the primary are not WAL-logged, so data on the standby will likely
re-write the hints again on the standby. Thus, the standby server will still perform disk writes even though all
users are read-only; no changes occur to the data values themselves. Users will still write large sort
temporary files and re-generate relcache info files, so no part of the database is truly read-only during hot
standby mode. Note also that writes to remote databases using dblink module, and other operations
outside the database using PL functions will still be possible, even though the transaction is read-only
locally.

The following types of administration commands are not accepted during recovery mode:

• Data Definition Language (DDL): e.g., CREATE INDEX
• Privilege and Ownership: GRANT, REVOKE, REASSIGN
• Maintenance commands: ANALYZE, VACUUM, CLUSTER, REINDEX

Again, note that some of these commands are actually allowed during "read only" mode transactions on the
primary.

As a result, you cannot create additional indexes that exist solely on the standby, nor statistics that exist
solely on the standby. If these administration commands are needed, they should be executed on the
primary, and eventually those changes will propagate to the standby.

pg_cancel_backend() and pg_terminate_backend() will work on user backends, but not the startup process,
which performs recovery. pg_stat_activity does not show recovering transactions as active. As a result,
pg_prepared_xacts is always empty during recovery. If you wish to resolve in-doubt prepared transactions,
view pg_prepared_xacts on the primary and issue commands to resolve transactions there or resolve them
after the end of recovery.

pg_locks will show locks held by backends, as normal. pg_locks also shows a virtual transaction managed
by the startup process that owns all AccessExclusiveLocks held by transactions being replayed by recovery.
Note that the startup process does not acquire locks to make database changes, and thus locks other than
AccessExclusiveLocks do not show in pg_locks for the Startup process; they are just presumed to exist.

The Nagios plugin check_pgsql will work, because the simple information it checks for exists. The
check_postgres monitoring script will also work, though some reported values could give different or
confusing results. For example, last vacuum time will not be maintained, since no vacuum occurs on the
standby. Vacuums running on the primary do still send their changes to the standby.

WAL file control commands will not work during recovery, e.g., pg_backup_start, pg_switch_wal etc.

Dynamically loadable modules work, including pg_stat_statements.

Advisory locks work normally in recovery, including deadlock detection. Note that advisory locks are never
WAL logged, so it is impossible for an advisory lock on either the primary or the standby to conflict with WAL
replay. Nor is it possible to acquire an advisory lock on the primary and have it initiate a similar advisory lock
on the standby. Advisory locks relate only to the server on which they are acquired.

Trigger-based replication systems such as Slony, Londiste and Bucardo won’t run on the standby at all,
though they will run happily on the primary server as long as the changes are not sent to standby servers to
be applied. WAL replay is not trigger-based so you cannot relay from the standby to any system that requires
additional database writes or relies on the use of triggers.

New OIDs cannot be assigned, though some UUID generators may still work as long as they do not rely on
writing new status to the database.

Currently, temporary table creation is not allowed during read-only transactions, so in some cases existing
scripts will not run correctly. This restriction might be relaxed in a later release. This is both an SQL standard
compliance issue and a technical issue.

DROP TABLESPACE can only succeed if the tablespace is empty. Some standby users may be actively using the
tablespace via their temp_tablespaces parameter. If there are temporary files in the tablespace, all active

79

queries are canceled to ensure that temporary files are removed, so the tablespace can be removed and
WAL replay can continue.

Running DROP DATABASE or ALTER DATABASE … SET TABLESPACE on the primary will generate a WAL entry
that will cause all users connected to that database on the standby to be forcibly disconnected. This action
occurs immediately, whatever the setting of max_standby_streaming_delay. Note that ALTER DATABASE …
RENAME does not disconnect users, which in most cases will go unnoticed, though might in some cases cause
a program confusion if it depends in some way upon database name.

In normal (non-recovery) mode, if you issue DROP USER or DROP ROLE for a role with login capability while that
user is still connected then nothing happens to the connected user — they remain connected. The user
cannot reconnect however. This behavior applies in recovery also, so a DROP USER on the primary does not
disconnect that user on the standby.

The cumulative statistics system is active during recovery. All scans, reads, blocks, index usage, etc., will be
recorded normally on the standby. However, WAL replay will not increment relation and database specific
counters. I.e. replay will not increment pg_stat_all_tables columns (like n_tup_ins), nor will reads or writes
performed by the startup process be tracked in the pg_statio views, nor will associated pg_stat_database
columns be incremented.

Autovacuum is not active during recovery. It will start normally at the end of recovery.

The checkpointer process and the background writer process are active during recovery. The checkpointer
process will perform restartpoints (similar to checkpoints on the primary) and the background writer process
will perform normal block cleaning activities. This can include updates of the hint bit information stored on
the standby server. The CHECKPOINT command is accepted during recovery, though it performs a restartpoint
rather than a new checkpoint.

Hot Standby Parameter Reference

On the primary, parameters wal_level and vacuum_defer_cleanup_age can be used.
max_standby_archive_delay and max_standby_streaming_delay have no effect if set on the primary.

On the standby, parameters hot_standby, max_standby_archive_delay and max_standby_streaming_delay
can be used. vacuum_defer_cleanup_age has no effect as long as the server remains in standby mode,
though it will become relevant if the standby becomes primary.

Caveats

There are several limitations of hot standby. These can and probably will be fixed in future releases:

• Full knowledge of running transactions is required before snapshots can be taken. Transactions that use
large numbers of subtransactions (currently greater than 64) will delay the start of read-only connections
until the completion of the longest running write transaction. If this situation occurs, explanatory
messages will be sent to the server log.

• Valid starting points for standby queries are generated at each checkpoint on the primary. If the standby
is shut down while the primary is in a shutdown state, it might not be possible to re-enter hot standby
until the primary is started up, so that it generates further starting points in the WAL logs. This situation
isn’t a problem in the most common situations where it might happen. Generally, if the primary is shut
down and not available anymore, that’s likely due to a serious failure that requires the standby being
converted to operate as the new primary anyway. And in situations where the primary is being
intentionally taken down, coordinating to make sure the standby becomes the new primary smoothly is
also standard procedure.

• At the end of recovery, AccessExclusiveLocks held by prepared transactions will require twice the
normal number of lock table entries. If you plan on running either a large number of concurrent
prepared transactions that normally take AccessExclusiveLocks, or you plan on having one large
transaction that takes many AccessExclusiveLocks, you are advised to select a larger value of
max_locks_per_transaction, perhaps as much as twice the value of the parameter on the primary
server. You need not consider this at all if your setting of max_prepared_transactions is 0.

• The Serializable transaction isolation level is not yet available in hot standby. An attempt to set a
transaction to the serializable isolation level in hot standby mode will generate an error.

80

https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-VACUUM-DEFER-CLEANUP-AGE
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-MAX-STANDBY-ARCHIVE-DELAY
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-MAX-STANDBY-STREAMING-DELAY
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-HOT-STANDBY
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-MAX-STANDBY-ARCHIVE-DELAY
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-MAX-STANDBY-STREAMING-DELAY
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-VACUUM-DEFER-CLEANUP-AGE

IvorySQL Advanced Feature
Installation
Introduction
The installation methods for IvorySQL include the following four:

• Yum installation
• Docker installation
• rpm installation
• Source code installation

This chapter will provide detailed instructions on the installation, execution, and uninstallation processes for
each method. For a quicker access to IvorySQL, please refer to Quick installation.

Yum installation
• Run yum install commands

$ sudo yum install -y https://yum.highgo.ca/dists/ivorysql-rpms/repo/ivorysql-release-
3.0-1.noarch.rpm

$ sudo yum install -y ivorysql3 ivorysql3-server ivorysql3-contrib ivorysql3-test

IvorySQL then will be installed in the /usr/local/ivorysql directory.

Yum configuration file /etc/yum.repos.d/ivorysql.repo will be created after the successful installation.

• Checking installation results

yum search ivorysql

Details:

id Package name Description
1 ivorysql3.x86_64 IvorySQL client programs and lib

files
2 ivorysql3-contrib.x86_64 Contributed source code and

binary files released with IvorySQL
3 Ivorysql3-devel.x86_64 IvorySQL development header files

and libraries
4 Ivorysql3-docs.x86_64 Additional docs for IvorySQL
5 ivorysql3-libs.x86_64 Shared libraries required by all

IvorySQL clients
6 Ivorysql3-llvmjit.x86_64 Instant compilation support for

IvorySQL
7 Ivorysql3-plperl.x86_64 Perl, a procedural language for

IvorySQL

81

8 Ivorysql3-plpython3.x86_64 Python3, a procedural language
for IvorySQL

9 Ivorysql3-pltcl.x86_64 Tcl, a procedural language for
IvorySQL

10 ivorysql3-server.x86_64 The programs required to create
and run an IvorySQL server

11 Ivorysql3-test.x86_64 Test suite released with IvorySQL
12 ivorysql-release.noarch Yum Source Configuration RPM

Package of HighGo

Docker installation
• Get IvorySQL image from Docker Hub

$ docker pull ivorysql/ivorysql:3.2-ubi8

• Run IvorySQL

$ docker run --name ivorysql -p 5434:5432 -e IVORYSQL_PASSWORD=your_password -d
ivorysql/ivorysql:3.2-ubi8

-e Parameter Explanation

Parameter Name Required Description
IVORYSQL_USER No Database user, default is ivorysql
IVORYSQL_PASSWORD yes Database password
IVORYSQL_DB no Database name,default is ivorysql
POSTGRES_HOST_AUTH_METHO
D

no Modify host authentication
method,reference value:md5

POSTGRES_INITDB_ARGS no Add additional parameters to
initdb,reference value:"--data-
checksums"

PGDATA no Define the data directory to be
located in another path or folder
(e.g., subdirectory), defaulting to
/var/lib/ivorysql/data

POSTGRES_INITDB_WALDIR no Define the IvorySQL transaction
folder path, which defaults to a
subdirectory within the data
directory (PGDATA)

1. It is not recommended to set the POSTGRES_HOST_AUTH_METHOD parameter to
trust, as this will make the IVORYSQL_PASSWORD setting ineffective.

2. If the POSTGRES_HOST_AUTH_METHOD parameter is set to scram-sha-256, it is also
necessary to set POSTGRES_INITDB_ARGS to --auth-host=scram-sha-256 to ensure
proper initialization of the database.

rpm installation
• Installing dependencies

82

$ sudo yum install -y libicu libxslt python3
$ sudo yum --disablerepo=* localinstall *.rpm

• Getting rpms

$ sudo wget
https://github.com/IvorySQL/IvorySQL/releases/download/IvorySQL_3.2/ivorysql3-libs-
3.2-1.rhel7.x86_64.rpm

$ sudo wget
https://github.com/IvorySQL/IvorySQL/releases/download/IvorySQL_3.2/ivorysql3-3.2-
1.rhel7.x86_64.rpm

$ sudo wget
https://github.com/IvorySQL/IvorySQL/releases/download/IvorySQL_3.2/ivorysql3-contrib-
3.2-1.rhel7.x86_64.rpm

$ sudo wget
https://github.com/IvorySQL/IvorySQL/releases/download/IvorySQL_3.2/ivorysql3-server-
3.2-1.rhel7.x86_64.rpm

• Installing rpms

Install the rpms in the following order, since the latters depend on the formers:

$ sudo rpm -ivh ivorysql3-libs-3.2-1.rhel7.x86_64.rpm
$ sudo rpm -ivh ivorysql3-3.2-1.rhel7.x86_64.rpm
$ sudo rpm -ivh ivorysql3-server-3.2-1.rhel7.x86_64.rpm --nodeps
$ sudo rpm -ivh ivorysql3-contrib-3.2-1.rhel7.x86_64.rpm

IvorySQL then will be installed in the /usr/local/ivorysql directory.

Source code installation
• Installing dependencies

$ sudo yum install -y bison-devel readline-devel zlib-devel openssl-devel
$ sudo yum groupinstall -y 'Development Tools'

• Getting source code

$ git clone https://github.com/IvorySQL/IvorySQL.git

• Configuring

In the IvorySQL directory run the following command with --prefix to specify the directory where you

83

want the database to be installed:

$./configure --prefix=/usr/local/ivorysql/ivorysql-3

• Compiling

Run the following command to compile the source code:

$ make

• Installing

Run the following command to install the database system, IvorySQL then will be installed in the
directory specified by --prefix:

$ sudo make install

When the compilation is completed, you can test the result with 'make check' or 'make all-
check-world' before your installation

Start Database
Users following the instructions in Yum installation, rpm installation, and Source code installation need to
manually start the database.

Execute the following command to grant permissions to the installation user. The example user is ivorysql,
and the installation directory is /usr/local/ivorysql.:

$ sudo chown -R ivorysql:ivorysql /usr/local/ivorysql

• Setting environment variables

Add below contents in ~/.bash_profile file and source to make it effective:

PATH=/usr/local/ivorysql/ivorysql-3/bin:$PATH
export PATH
LD_LIBRARY_PATH=/usr/local/ivorysql/ivorysql-3/lib
export LD_LIBRARY_PATH
PGDATA=/usr/local/ivorysql/ivorysql-3/data
export PGDATA

$ source ~/.bash_profile

• Initializing database

$ initdb -D /usr/local/ivorysql/ivorysql-3/data

84

 The -D option specifies the directory where the database cluster should be stored.
This is the only information required by initdb, but you can avoid writing it by
setting the PGDATA environment variable, which can be convenient since the database
server can find the database directory later by the same variable.

 For more options, refer to initdb --help.

• Starting IvorySQL service

$ pg_ctl -D /usr/local/ivorysql/ivorysql-3/data -l ivory.log start

The -D option specifies the file system location of the database configuration files. If this option is omitted,
the environment variable PGDATA in [v3-2::6:::setting-environment-variables] is used. -l option appends the
server log output to filename. If the file does not exist, it is created.

For more options, refer to pg_ctl --help.

Confirm it’s successfully started:

$ ps -ef | grep postgres
ivorysql 3214 1 0 20:35 ? 00:00:00 /usr/local/ivorysql/ivorysql-
3/bin/postgres -D /usr/local/ivorysql/ivorysql-3/data
ivorysql 3215 3214 0 20:35 ? 00:00:00 postgres: checkpointer
ivorysql 3216 3214 0 20:35 ? 00:00:00 postgres: background writer
ivorysql 3218 3214 0 20:35 ? 00:00:00 postgres: walwriter
ivorysql 3219 3214 0 20:35 ? 00:00:00 postgres: autovacuum launcher
ivorysql 3220 3214 0 20:35 ? 00:00:00 postgres: logical replication launcher
ivorysql 3238 1551 0 20:35 pts/0 00:00:00 grep --color=auto postgres

Connecting to IvorySQL
Connect to IovrySQL via psql:

$ psql -d <database>
psql (16.2)
Type "help" for help.

ivorysql=#

 The -d option specifies the name of the database to connect to. ivorysql is the
default database of IvorySQL. However,IvorySQL of lower versions need the users
themselves to connect to postgres database at the first connection and then create the
ivorysql database.The latest IvorySQL can do all these for users.

 For more options, refer to psql --help.

85

When running IvorySQL in Docker, additional parameters need to be added, like: psql -d
ivorysql -U ivorysql -h 127.0.0.1 -p 5434

Uninstallation

No matter which method is used for the uninstallation, make sure the service has been
stopped cleanly and your data has been backed up safely.

Uninstallation for yum installation

Run the following commands in turn and clean the residual folders:

$ sudo yum remove -y ivorysql3 ivorysql3-server ivorysql3-contrib ivorysql3-test
$ sudo rpm -e ivorysql-release-3.0-1.noarch
$ sudo rm -rf /usr/local/ivorysql

Uninstallation for docker installation

Stop IvorySQL container and remove IvorySQL image:

$ docker stop ivorysql
$ docker rm ivorysql
$ docker rmi ivorysql/ivorysql:3.2-ubi8

Uninstallation for rpm installation

Query the rpms installed and uninstall them in turn, then clear the residual folders:

$ rpm -qa | grep ivorysql
$ sudo rpm -e ivorysql3-contrib-3.2-1.rhel7.x86_64
$ sudo rpm -e ivorysql3-server-3.2-1.rhel7.x86_64
$ sudo rpm -e ivorysql3-3.2-1.rhel7.x86_64
$ sudo rpm -e ivorysql3-libs-3.2-1.rhel7.x86_64
$ sudo rm -rf /usr/local/ivorysql

Uninstallation for source code installation

Uninstall the database system, then clear the residual folders:

sudo make uninstall
make clean
sudo rm -rf /usr/local/ivorysql

Building Cluster
This chapter is a demo to show you how to build an IvorySQL cluster. Just take a cluster with one primary
node and only one standby node(async standby) as example.

86

Primary node

Installing and start database

For quick database installation by yum, please refer to Quick installation。

For more installation options, please refer to Installation。

 The master node database needs to be installed and started.

Stopping firewall

Stop firewall for all the nodes in the cluster to ensure the communication:

$ sudo systemctl stop firewalld

Setting environment variables

To create the streaming replication, we need configure the postgresql.conf and pg_hba.conf files on the
primary node.

• postgresql.conf

Append the following contents to the end of postgresql.conf:

listen_addresses = '*'
max_connections = 100
wal_level = replica
max_wal_senders = 5
hot_standby = on

• pg_hba.conf

Append the following contents to the end of pg_hba.conf:

host all all 0.0.0.0/0 trust
host replication all 0.0.0.0/0 trust

The configuration of pg_hba in the example is only for demo purposes and testing. This
configuration will result in invalidation of the database password. Please configure
according to the actual environment.

Restarting IvorySQL sevice

$ pg_ctl restart

Standby node

87

Installing database

For quick database installation by yum, please refer to Quick installation。

For more installation options, please refer to Installation。

 The standby node database only needs to be installed and not started.

Stopping firewall

Stop firewall for all the nodes in the cluster to ensure the communication:

$ sudo systemctl stop firewalld

Building streaming replication

Run below command on the standby node to take base backups of the primary, that is, to build a streaming
replication:

$ sudo pg_basebackup -F p -P -X fetch -R -h <primary_ip> -p <primary_port> -U ivorysql
-D /usr/local/ivorysql/ivorysql-3/data

• Specifies the host name of the machine on which the server is running;
• Specifies the TCP port or local Unix domain socket file extension on which the server is listening for

connections. Defaults is 5432;
• User name to connect as;
• Directory to write the output to. pg_basebackup will create the directory and any parent directories if

necessary. The directory may already exist, but it is an error if the directory already exists and is not
empty.

For more options, refer to pg_basebackup --help.

Setting environment variables

Add below contents in ~/.bash_profile file:

PATH=/usr/local/ivorysql/ivorysql-3/bin:$PATH
export PATH
LD_LIBRARY_PATH=/usr/local/ivorysql/ivorysql-3/lib
export LD_LIBRARY_PATH
PGDATA=/usr/local/ivorysql/ivorysql-3/data
export PGDATA

Source to make it effective:

$ source ~/.bash_profile

88

Starting IvorySQL sevice

$ sudo pg_ctl -D /usr/local/ivorysql/ivorysql-3/data start

Experience the IvorySQL cluster

Checking cluster status

Run below command on the primary node, you will see walsender:

$ ps -ef |grep postgres
...
ivorysql 11176 8067 0 21:54 ? 00:00:00 postgres: walsender ivorysql
192.168.31.102(53416) streaming 0/7000060...

while it is walreceiver on standby:

$ ps -ef | grep postgres
...
ivorysql 6567 6139 0 21:54 ? 00:00:00 postgres: walreceiver streaming
0/7000060
...

On the primary node, connect to IvorySQL and show the status:

$ psql -d postgres
psql (16.2)
Type "help" for help.

postgres=# select * from pg_stat_replication;
 pid | usesysid | usename | application_name | client_addr | client_hostname |
client_port | backend_start | backend_
xmin | state | sent_lsn | write_lsn | flush_lsn | replay_lsn | write_lag |
flush_lag | replay_lag | sync_priority | sync_state |
 reply_time
-------+----------+----------+------------------+----------------+-----------------+
-------------+-------------------------------+---------
-----+-----------+-----------+-----------+-----------+------------+-----------+
-----------+------------+---------------+------------+------

 11176 | 10 | ivorysql | walreceiver | 192.168.31.102 | |
53416 | 2024-02-25 21:54:52.041847-05 |
 | streaming | 0/7000148 | 0/7000148 | 0/7000148 | 0/7000148 | |
| | 0 | async | 2024-
02-25 22:52:07.325111-05

89

(1 row)

Here 192.168.31.102 is the ip address of the standby node, and async means the data synchronization
method is asynchronous.

Using the cluster

All writing operations are performed on the primary node, while reading can be on both primary and
standby. The data on primary is synchronized to standby through streaming replication. The writing result
can be queried on all the nodes in the cluster.

Below is an example. Create a new database test on primary and query:

$ psql -d postgres
psql (16.2)
Type "help" for help.

postgres=# create database test;
CREATE DATABASE
postgres=# \l
 List of databases
 Name | Owner | Encoding | Locale Provider | Collate | Ctype | ICU
Locale | ICU Rules | Access privileges
-----------+----------+----------+-----------------+-------------+-------------+
------------+-----------+-----------------------
 postgres | ivorysql | UTF8 | libc | en_US.UTF-8 | en_US.UTF-8 |
| |
 template0 | ivorysql | UTF8 | libc | en_US.UTF-8 | en_US.UTF-8 |
| | =c/ivorysql +
 | | | | | |
| | ivorysql=CTc/ivorysql
 template1 | ivorysql | UTF8 | libc | en_US.UTF-8 | en_US.UTF-8 |
| | =c/ivorysql +
 | | | | | |
| | ivorysql=CTc/ivorysql
 test | ivorysql | UTF8 | libc | en_US.UTF-8 | en_US.UTF-8 |
| |
(4 rows)

Query on the standby node:

$ psql -d postgres
psql (16.2)
Type "help" for help.

postgres=# \l
 List of databases

90

 Name | Owner | Encoding | Locale Provider | Collate | Ctype | ICU
Locale | ICU Rules | Access privileges
-----------+----------+----------+-----------------+-------------+-------------+
------------+-----------+-----------------------
 postgres | ivorysql | UTF8 | libc | en_US.UTF-8 | en_US.UTF-8 |
| |
 template0 | ivorysql | UTF8 | libc | en_US.UTF-8 | en_US.UTF-8 |
| | =c/ivorysql +
 | | | | | |
| | ivorysql=CTc/ivorysql
 template1 | ivorysql | UTF8 | libc | en_US.UTF-8 | en_US.UTF-8 |
| | =c/ivorysql +
 | | | | | |
| | ivorysql=CTc/ivorysql
 test | ivorysql | UTF8 | libc | en_US.UTF-8 | en_US.UTF-8 |
| |
(4 rows)

Developer

Overview
lvorySQL provides unique additional functionality on top of the open source PostgreSQL database.

IvorySQL is committed to delivering value to its end-users through innovation and building on top of open
source based database solutions.

Our goal is to deliver a solution with high performance，scalability，reliability，and ease of use for small
medium and large-scale enterprises.

The extended functionality provided by IvorySQL will enable users to build highly performant and scalable
PostgreSQL database clusters with better database compatibility and administration.This simplifies the
process of migration to PostgreSQLfrom other DBMS with enhanced database administration experiences.

Architecture Overview
The IvorySQL follows the same general architecture of PostgreSQL with some additions,but it does not
deviate from its core philosophy.Thediagram below depicts essentially how IvorySQL operates.

91

The yellow color in the diagram shows the new modules added by IvorySQL on top of existing PostgreSQL
while IvorySQL has also made changes to existing modules and logical structures as well.

The most noteworthy of those modules that received updates for supporting oracle compatibility are
backend parser and system catalogs.

Catalog changes

The following diagram depicts the changes made to PostgreSQL’s existing directories and the additions
that have been made.

92

Database Modeling

Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
IvorySQL server can manage many databases. Typically, a separate database is used for each project or for
each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit this
step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:

createdb: command not found

then IvorySQL was not installed properly. Either it was not installed at all or your shell’s search path was
not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation instructions
to correct the situation.

Another response could be this:

93

createdb: error: connection to server on socket "/tmp/.s.PGSQL.5432" failed: No such
file or directory
 Is the server running locally and accepting connections on that socket?

This means that the server was not started, or it is not listening where createdb expects to contact it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: error: connection to server on socket "/tmp/.s.PGSQL.5432" failed: FATAL:
role "joe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a IvorySQL
user account for you. (IvorySQL user accounts are distinct from operating system user accounts.) If you are
the administrator, You will need to become the operating system user under which IvorySQL was installed
(usually postgres) to create the first user account. It could also be that you were assigned a IvorySQL user
name that is different from your operating system user name; in that case you need to use the -U switch or
set the PGUSER environment variable to specify your IvorySQL user name.

If you have a user account but it does not have the privileges required to create a database, you will see the
following:

createdb: error: database creation failed: ERROR: permission denied to create
database

Not every user has authorization to create new databases. If IvorySQL refuses to create databases for you
then the site administrator needs to grant you permission to create databases. Consult your site
administrator if this occurs. If you installed IvorySQL yourself then you should log in for the purposes of this
tutorial under the user account that you started the server as. [1]

You can also create databases with other names. IvorySQL allows you to create any number of databases at
a given site. Database names must have an alphabetic first character and are limited to 63 bytes in length. A
convenient choice is to create a database with the same name as your current user name. Many tools
assume that database name as the default, so it can save you some typing. To create that database, simply
type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone, so
this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

94

https://www.postgresql.org/docs/current/tutorial-createdb.html#ftn.id-1.4.3.4.10.4
https://www.postgresql.org/docs/current/app-createdb.html
https://www.postgresql.org/docs/current/app-dropdb.html

Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (
 city varchar(80),
 temp_lo int, -- low temperature
 temp_hi int, -- high temperature
 prcp real, -- precipitation
 date date
);

You can enter this into psql with the line breaks. psql will recognize that the command is not terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can type
the command aligned differently than above, or even all on one line. Two dashes (“--”) introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

varchar(80) specifies a data type that can store arbitrary character strings up to 80 characters in length. int
is the normal integer type. real is a type for storing single precision floating-point numbers. date should be
self-explanatory. (Yes, the column of type date is also named date. This might be convenient or confusing —
you choose.)

IvorySQL supports the standard SQL types int, smallint, real, double precision, char(`N), `varchar(`N),
`date, time, timestamp, and interval, as well as other types of general utility and a rich set of geometric
types. IvorySQL can be customized with an arbitrary number of user-defined data types. Consequently, type
names are not key words in the syntax, except where required to support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
 name varchar(80),
 location point
);

The point type is an example of a IvorySQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE tablename;

Write to data
When a table is created, it contains no data. The first thing to do before a database can be of much use is to
insert data. Data is inserted one row at a time. You can also insert more than one row in a single command,
but it is not possible to insert something that is not a complete row. Even if you know only some column
values, a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column values.

95

https://www.postgresql.org/docs/current/sql-insert.html

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric
);

An example command to insert a row would be:

INSERT INTO products VALUES (1, 'Cheese', 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To avoid
this you can also list the columns explicitly. For example, both of the following commands have the same
effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese', 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns will be
filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, 'Cheese');
INSERT INTO products VALUES (1, 'Cheese');

The second form is a IvorySQL extension. It fills the columns from the left with as many values as are given,
and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', DEFAULT);
INSERT INTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES
 (1, 'Cheese', 9.99),
 (2, 'Bread', 1.99),
 (3, 'Milk', 2.99);

It is also possible to insert the result of a query (which might be no rows, one row, or many rows):

INSERT INTO products (product_no, name, price)

96

 SELECT product_no, name, price FROM new_products
 WHERE release_date = 'today';

This provides the full power of the SQL query mechanism for computing the rows to be inserted.

Tip
When inserting a lot of data at the same time, consider using the COPY command. It is not as flexible
as the INSERT command, but is more efficient.

Query Data

Combining Queries (UNION, INTERSECT, EXCEPT)
The results of two queries can be combined using the set operations union, intersection, and difference. The
syntax is

query1 UNION [ALL] query2
query1 INTERSECT [ALL] query2
query1 EXCEPT [ALL] query2

where query1 and query2 are queries that can use any of the features discussed up to this point.

UNION effectively appends the result of query2 to the result of query1 (although there is no guarantee that this
is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows from its result,
in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of query1 and in the result of query2. Duplicate rows are
eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is sometimes
called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types.

Set operations can be combined, for example

query1 UNION query2 EXCEPT query3

which is equivalent to

(query1 UNION query2) EXCEPT query3

As shown here, you can use parentheses to control the order of evaluation. Without parentheses, UNION and
EXCEPT associate left-to-right, but INTERSECT binds more tightly than those two operators. Thus

query1 UNION query2 INTERSECT query3

97

https://www.postgresql.org/docs/current/sql-copy.html
https://www.postgresql.org/docs/current/sql-insert.html

means

query1 UNION (query2 INTERSECT query3)

You can also surround an individual query with parentheses. This is important if the query needs to use any
of the clauses discussed in following sections, such as LIMIT. Without parentheses, you’ll get a syntax error,
or else the clause will be understood as applying to the output of the set operation rather than one of its
inputs. For example,

SELECT a FROM b UNION SELECT x FROM y LIMIT 10

is accepted, but it means

(SELECT a FROM b UNION SELECT x FROM y) LIMIT 10

not

SELECT a FROM b UNION (SELECT x FROM y LIMIT 10)

Parallel Query
How Parallel Query Works
When the optimizer determines that parallel query is the fastest execution strategy for a particular query, it
will create a query plan that includes a Gather or Gather Merge node. Here is a simple example:

EXPLAIN SELECT * FROM pgbench_accounts WHERE filler LIKE '%x%';
 QUERY PLAN

 Gather (cost=1000.00..217018.43 rows=1 width=97)
 Workers Planned: 2
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..216018.33 rows=1 width=97)
 Filter: (filler ~~ '%x%'::text)
(4 rows)

In all cases, the Gather or Gather Merge node will have exactly one child plan, which is the portion of the
plan that will be executed in parallel. If the Gather or Gather Merge node is at the very top of the plan tree,
then the entire query will execute in parallel. If it is somewhere else in the plan tree, then only the portion of
the plan below it will run in parallel. In the example above, the query accesses only one table, so there is only
one plan node other than the Gather node itself; since that plan node is a child of the Gather node, it will run
in parallel.

Using EXPLAIN, you can see the number of workers chosen by the planner. When the Gather node is reached
during query execution, the process that is implementing the user’s session will request a number of
background worker processes equal to the number of workers chosen by the planner. The number of
background workers that the planner will consider using is limited to at most
max_parallel_workers_per_gather. The total number of background workers that can exist at any one time
is limited by both max_worker_processes and max_parallel_workers. Therefore, it is possible for a parallel

98

https://www.postgresql.org/docs/current/using-explain.html
https://www.postgresql.org/docs/current/bgworker.html
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-MAX-PARALLEL-WORKERS-PER-GATHER
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-MAX-WORKER-PROCESSES
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-MAX-PARALLEL-WORKERS

query to run with fewer workers than planned, or even with no workers at all. The optimal plan may depend
on the number of workers that are available, so this can result in poor query performance. If this occurrence
is frequent, consider increasing max_worker_processes and max_parallel_workers so that more workers can
be run simultaneously or alternatively reducing max_parallel_workers_per_gather so that the planner
requests fewer workers.

Every background worker process that is successfully started for a given parallel query will execute the
parallel portion of the plan. The leader will also execute that portion of the plan, but it has an additional
responsibility: it must also read all of the tuples generated by the workers. When the parallel portion of the
plan generates only a small number of tuples, the leader will often behave very much like an additional
worker, speeding up query execution. Conversely, when the parallel portion of the plan generates a large
number of tuples, the leader may be almost entirely occupied with reading the tuples generated by the
workers and performing any further processing steps that are required by plan nodes above the level of the
Gather node or Gather Merge node. In such cases, the leader will do very little of the work of executing the
parallel portion of the plan.

When the node at the top of the parallel portion of the plan is Gather Merge rather than Gather, it indicates
that each process executing the parallel portion of the plan is producing tuples in sorted order, and that the
leader is performing an order-preserving merge. In contrast, Gather reads tuples from the workers in
whatever order is convenient, destroying any sort order that may have existed.

When Can Parallel Query Be Used?
There are several settings that can cause the query planner not to generate a parallel query plan under any
circumstances. In order for any parallel query plans whatsoever to be generated, the following settings must
be configured as indicated.

• max_parallel_workers_per_gather must be set to a value that is greater than zero. This is a special case
of the more general principle that no more workers should be used than the number configured via
max_parallel_workers_per_gather.

In addition, the system must not be running in single-user mode. Since the entire database system is
running as a single process in this situation, no background workers will be available.

Even when it is in general possible for parallel query plans to be generated, the planner will not generate
them for a given query if any of the following are true:

• The query writes any data or locks any database rows. If a query contains a data-modifying operation
either at the top level or within a CTE, no parallel plans for that query will be generated. As an exception,
the following commands, which create a new table and populate it, can use a parallel plan for the
underlying SELECT part of the query:

• CREATE TABLE … AS

• SELECT INTO
• CREATE MATERIALIZED VIEW
• REFRESH MATERIALIZED VIEW
• The query might be suspended during execution. In any situation in which the system thinks that partial

or incremental execution might occur, no parallel plan is generated. For example, a cursor created using
DECLARE CURSOR will never use a parallel plan. Similarly, a PL/pgSQL loop of the form FOR x IN query
LOOP .. END LOOP will never use a parallel plan, because the parallel query system is unable to verify
that the code in the loop is safe to execute while parallel query is active.

• The query uses any function marked PARALLEL UNSAFE. Most system-defined functions are PARALLEL
SAFE, but user-defined functions are marked PARALLEL UNSAFE by default.

• The query is running inside of another query that is already parallel. For example, if a function called by a
parallel query issues an SQL query itself, that query will never use a parallel plan. This is a limitation of
the current implementation, but it may not be desirable to remove this limitation, since it could result in
a single query using a very large number of processes.

Even when parallel query plan is generated for a particular query, there are several circumstances under
which it will be impossible to execute that plan in parallel at execution time. If this occurs, the leader will

99

https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-MAX-PARALLEL-WORKERS-PER-GATHER
https://www.postgresql.org/docs/current/sql-declare.html

execute the portion of the plan below the Gather node entirely by itself, almost as if the Gather node were
not present. This will happen if any of the following conditions are met:

• No background workers can be obtained because of the limitation that the total number of background
workers cannot exceed max_worker_processes.

• No background workers can be obtained because of the limitation that the total number of background
workers launched for purposes of parallel query cannot exceed max_parallel_workers.

• The client sends an Execute message with a non-zero fetch count. See the discussion of the extended
query protocol. Since libpq currently provides no way to send such a message, this can only occur when
using a client that does not rely on libpq. If this is a frequent occurrence, it may be a good idea to set
max_parallel_workers_per_gather to zero in sessions where it is likely, so as to avoid generating query
plans that may be suboptimal when run serially.

Parallel Plans
Because each worker executes the parallel portion of the plan to completion, it is not possible to simply take
an ordinary query plan and run it using multiple workers. Each worker would produce a full copy of the
output result set, so the query would not run any faster than normal but would produce incorrect results.
Instead, the parallel portion of the plan must be what is known internally to the query optimizer as a partial
plan; that is, it must be constructed so that each process that executes the plan will generate only a subset
of the output rows in such a way that each required output row is guaranteed to be generated by exactly one
of the cooperating processes. Generally, this means that the scan on the driving table of the query must be a
parallel-aware scan.

Parallel Scans

The following types of parallel-aware table scans are currently supported.

• In a parallel sequential scan, the table’s blocks will be divided into ranges and shared among the
cooperating processes. Each worker process will complete the scanning of its given range of blocks
before requesting an additional range of blocks.

• In a parallel bitmap heap scan, one process is chosen as the leader. That process performs a scan of one
or more indexes and builds a bitmap indicating which table blocks need to be visited. These blocks are
then divided among the cooperating processes as in a parallel sequential scan. In other words, the heap
scan is performed in parallel, but the underlying index scan is not.

• In a parallel index scan or parallel index-only scan, the cooperating processes take turns reading data
from the index. Currently, parallel index scans are supported only for btree indexes. Each process will
claim a single index block and will scan and return all tuples referenced by that block; other processes
can at the same time be returning tuples from a different index block. The results of a parallel btree scan
are returned in sorted order within each worker process.

Other scan types, such as scans of non-btree indexes, may support parallel scans in the future.

Parallel Joins

Just as in a non-parallel plan, the driving table may be joined to one or more other tables using a nested
loop, hash join, or merge join. The inner side of the join may be any kind of non-parallel plan that is
otherwise supported by the planner provided that it is safe to run within a parallel worker. Depending on the
join type, the inner side may also be a parallel plan.

• In a nested loop join, the inner side is always non-parallel. Although it is executed in full, this is efficient if
the inner side is an index scan, because the outer tuples and thus the loops that look up values in the
index are divided over the cooperating processes.

• In a merge join, the inner side is always a non-parallel plan and therefore executed in full. This may be
inefficient, especially if a sort must be performed, because the work and resulting data are duplicated in
every cooperating process.

• In a hash join (without the "parallel" prefix), the inner side is executed in full by every cooperating
process to build identical copies of the hash table. This may be inefficient if the hash table is large or the
plan is expensive. In a parallel hash join, the inner side is a parallel hash that divides the work of building

100

https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-MAX-WORKER-PROCESSES
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-MAX-PARALLEL-WORKERS
https://www.postgresql.org/docs/current/protocol-flow.html#PROTOCOL-FLOW-EXT-QUERY
https://www.postgresql.org/docs/current/protocol-flow.html#PROTOCOL-FLOW-EXT-QUERY
https://www.postgresql.org/docs/current/libpq.html
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-MAX-PARALLEL-WORKERS-PER-GATHER

a shared hash table over the cooperating processes.

Parallel Aggregation

IvorySQL supports parallel aggregation by aggregating in two stages. First, each process participating in the
parallel portion of the query performs an aggregation step, producing a partial result for each group of which
that process is aware. This is reflected in the plan as a Partial Aggregate node. Second, the partial results
are transferred to the leader via Gather or Gather Merge. Finally, the leader re-aggregates the results across
all workers in order to produce the final result. This is reflected in the plan as a Finalize Aggregate node.

Because the Finalize Aggregate node runs on the leader process, queries that produce a relatively large
number of groups in comparison to the number of input rows will appear less favorable to the query
planner. For example, in the worst-case scenario the number of groups seen by the Finalize Aggregate
node could be as many as the number of input rows that were seen by all worker processes in the Partial
Aggregate stage. For such cases, there is clearly going to be no performance benefit to using parallel
aggregation. The query planner takes this into account during the planning process and is unlikely to choose
parallel aggregate in this scenario.

Parallel aggregation is not supported in all situations. Each aggregate must be safe for parallelism and must
have a combine function. If the aggregate has a transition state of type internal, it must have serialization
and deserialization functions. See CREATE AGGREGATE for more details. Parallel aggregation is not
supported if any aggregate function call contains DISTINCT or ORDER BY clause and is also not supported for
ordered set aggregates or when the query involves GROUPING SETS. It can only be used when all joins
involved in the query are also part of the parallel portion of the plan.

Parallel Append

Whenever IvorySQL needs to combine rows from multiple sources into a single result set, it uses an Append or
MergeAppend plan node. This commonly happens when implementing UNION ALL or when scanning a
partitioned table. Such nodes can be used in parallel plans just as they can in any other plan. However, in a
parallel plan, the planner may instead use a Parallel Append node.

When an Append node is used in a parallel plan, each process will execute the child plans in the order in
which they appear, so that all participating processes cooperate to execute the first child plan until it is
complete and then move to the second plan at around the same time. When a Parallel Append is used
instead, the executor will instead spread out the participating processes as evenly as possible across its child
plans, so that multiple child plans are executed simultaneously. This avoids contention, and also avoids
paying the startup cost of a child plan in those processes that never execute it.

Also, unlike a regular Append node, which can only have partial children when used within a parallel plan, a
Parallel Append node can have both partial and non-partial child plans. Non-partial children will be
scanned by only a single process, since scanning them more than once would produce duplicate results.
Plans that involve appending multiple results sets can therefore achieve coarse-grained parallelism even
when efficient partial plans are not available. For example, consider a query against a partitioned table that
can only be implemented efficiently by using an index that does not support parallel scans. The planner
might choose a Parallel Append of regular Index Scan plans; each individual index scan would have to be
executed to completion by a single process, but different scans could be performed at the same time by
different processes.

enable_parallel_append can be used to disable this feature.

Parallel Plan Tips

If a query that is expected to do so does not produce a parallel plan, you can try reducing
parallel_setup_cost or parallel_tuple_cost. Of course, this plan may turn out to be slower than the serial
plan that the planner preferred, but this will not always be the case. If you don’t get a parallel plan even
with very small values of these settings (e.g., after setting them both to zero), there may be some reason why
the query planner is unable to generate a parallel plan for your query.

When executing a parallel plan, you can use EXPLAIN (ANALYZE, VERBOSE) to display per-worker statistics for
each plan node. This may be useful in determining whether the work is being evenly distributed between all
plan nodes and more generally in understanding the performance characteristics of the plan.

101

https://www.postgresql.org/docs/current/parallel-safety.html
https://www.postgresql.org/docs/current/sql-createaggregate.html
https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-ENABLE-PARALLEL-APPEND
https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-PARALLEL-SETUP-COST
https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-PARALLEL-TUPLE-COST

Transaction

ABORT — abort the current transaction
Synopsis

ABORT [WORK | TRANSACTION] [AND [NO] CHAIN]

Description
ABORT rolls back the current transaction and causes all the updates made by the transaction to be discarded.
This command is identical in behavior to the standard SQL command ROLLBACK, and is present only for
historical reasons.

Parameters
• WORK TRANSACTION

Optional key words. They have no effect.

• AND CHAIN

If AND CHAIN is specified, a new transaction is immediately started with the same transaction characteristics
(see SET TRANSACTION) as the just finished one. Otherwise, no new transaction is started.

Notes
Use COMMIT to successfully terminate a transaction.

Issuing ABORT outside of a transaction block emits a warning and otherwise has no effect.

Examples
To abort all changes:

ABORT;

Compatibility
This command is a IvorySQL extension present for historical reasons. ROLLBACK is the equivalent standard
SQL command.

BEGIN — start a transaction block
Synopsis

BEGIN [WORK | TRANSACTION] [transaction_mode [, ...]]

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ

102

https://www.postgresql.org/docs/current/sql-rollback.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-commit.html

UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE

Description
BEGIN initiates a transaction block, that is, all statements after a BEGIN command will be executed in a single
transaction until an explicit COMMIT or ROLLBACK is given. By default (without BEGIN), IvorySQL executes
transactions in “autocommit” mode, that is, each statement is executed in its own transaction and a
commit is implicitly performed at the end of the statement (if execution was successful, otherwise a rollback
is done).

Statements are executed more quickly in a transaction block, because transaction start/commit requires
significant CPU and disk activity. Execution of multiple statements inside a transaction is also useful to
ensure consistency when making several related changes: other sessions will be unable to see the
intermediate states wherein not all the related updates have been done.

If the isolation level, read/write mode, or deferrable mode is specified, the new transaction has those
characteristics, as if SET TRANSACTION was executed.

Parameters
• WORK TRANSACTION

Optional key words. They have no effect.

Refer to SET TRANSACTION for information on the meaning of the other parameters to this statement.

Notes
START TRANSACTION has the same functionality as BEGIN.

Use COMMIT or ROLLBACK to terminate a transaction block.

Issuing BEGIN when already inside a transaction block will provoke a warning message. The state of the
transaction is not affected. To nest transactions within a transaction block, use savepoints (see SAVEPOINT).

For reasons of backwards compatibility, the commas between successive transaction_modes can be
omitted.

Examples

To begin a transaction block:

BEGIN;

Compatibility
BEGIN is a IvorySQL language extension. It is equivalent to the SQL-standard command START TRANSACTION,
whose reference page contains additional compatibility information.

The DEFERRABLE transaction_mode is a IvorySQL language extension.

Incidentally, the BEGIN key word is used for a different purpose in embedded SQL. You are advised to be
careful about the transaction semantics when porting database applications.

103

https://www.postgresql.org/docs/current/sql-commit.html
https://www.postgresql.org/docs/current/sql-rollback.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-start-transaction.html
https://www.postgresql.org/docs/current/sql-commit.html
https://www.postgresql.org/docs/current/sql-rollback.html
https://www.postgresql.org/docs/current/sql-savepoint.html
https://www.postgresql.org/docs/current/sql-start-transaction.html

COMMIT — commit the current transaction
Synopsis

COMMIT [WORK | TRANSACTION] [AND [NO] CHAIN]

Description
COMMIT commits the current transaction. All changes made by the transaction become visible to others and
are guaranteed to be durable if a crash occurs.

Parameters
• WORK TRANSACTION

Optional key words. They have no effect.

• AND CHAIN

If AND CHAIN is specified, a new transaction is immediately started with the same transaction characteristics
(see SET TRANSACTION) as the just finished one. Otherwise, no new transaction is started.

Notes

Use ROLLBACK to abort a transaction.

Issuing COMMIT when not inside a transaction does no harm, but it will provoke a warning message. COMMIT
AND CHAIN when not inside a transaction is an error.

Examples
To commit the current transaction and make all changes permanent:

COMMIT;

Compatibility
The command COMMIT conforms to the SQL standard. The form COMMIT TRANSACTION is a IvorySQL extension.

COMMIT PREPARED — commit a transaction that was earlier
prepared for two-phase commit
Synopsis

COMMIT PREPARED transaction_id

Description
COMMIT PREPARED commits a transaction that is in prepared state.

104

https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-rollback.html

Parameters
• transaction_id

The transaction identifier of the transaction that is to be committed.

Notes
To commit a prepared transaction, you must be either the same user that executed the transaction
originally, or a superuser. But you do not have to be in the same session that executed the transaction.

This command cannot be executed inside a transaction block. The prepared transaction is committed
immediately.

All currently available prepared transactions are listed in the pg_prepared_xacts system view.

Examples
Commit the transaction identified by the transaction identifier foobar:

COMMIT PREPARED 'foobar';

Compatibility
COMMIT PREPARED is a IvorySQL extension. It is intended for use by external transaction management systems,
some of which are covered by standards (such as X/Open XA), but the SQL side of those systems is not
standardized.

END — commit the current transaction
Synopsis

END [WORK | TRANSACTION] [AND [NO] CHAIN]

Description
END commits the current transaction. All changes made by the transaction become visible to others and are
guaranteed to be durable if a crash occurs. This command is a IvorySQL extension that is equivalent to
COMMIT.

Parameters
• WORK TRANSACTION

Optional key words. They have no effect.

• AND CHAIN

If AND CHAIN is specified, a new transaction is immediately started with the same transaction characteristics
(see SET TRANSACTION) as the just finished one. Otherwise, no new transaction is started.

Notes
Use ROLLBACK to abort a transaction.

105

https://www.postgresql.org/docs/current/view-pg-prepared-xacts.html
https://www.postgresql.org/docs/current/sql-commit.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-rollback.html

Issuing END when not inside a transaction does no harm, but it will provoke a warning message.

Examples
To commit the current transaction and make all changes permanent:

END;

Compatibility
END is a IvorySQL extension that provides functionality equivalent to COMMIT, which is specified in the SQL
standard.

PREPARE TRANSACTION — prepare the current transaction for
two-phase commit
Synopsis

PREPARE TRANSACTION transaction_id

Description
PREPARE TRANSACTION prepares the current transaction for two-phase commit. After this command, the
transaction is no longer associated with the current session; instead, its state is fully stored on disk, and
there is a very high probability that it can be committed successfully, even if a database crash occurs before
the commit is requested.

Once prepared, a transaction can later be committed or rolled back with COMMIT PREPARED or ROLLBACK
PREPARED, respectively. Those commands can be issued from any session, not only the one that executed the
original transaction.

From the point of view of the issuing session, PREPARE TRANSACTION is not unlike a ROLLBACK command: after
executing it, there is no active current transaction, and the effects of the prepared transaction are no longer
visible. (The effects will become visible again if the transaction is committed.)

If the PREPARE TRANSACTION command fails for any reason, it becomes a ROLLBACK: the current transaction is
canceled.

Parameters
• transaction_id

An arbitrary identifier that later identifies this transaction for COMMIT PREPARED or ROLLBACK PREPARED. The
identifier must be written as a string literal, and must be less than 200 bytes long. It must not be the same as
the identifier used for any currently prepared transaction.

Notes
PREPARE TRANSACTION is not intended for use in applications or interactive sessions. Its purpose is to allow an
external transaction manager to perform atomic global transactions across multiple databases or other
transactional resources. Unless you’re writing a transaction manager, you probably shouldn’t be using
PREPARE TRANSACTION.

This command must be used inside a transaction block. Use BEGIN to start one.

106

https://www.postgresql.org/docs/current/sql-commit.html
https://www.postgresql.org/docs/current/sql-commit-prepared.html
https://www.postgresql.org/docs/current/sql-rollback-prepared.html
https://www.postgresql.org/docs/current/sql-rollback-prepared.html
https://www.postgresql.org/docs/current/sql-begin.html

It is not currently allowed to PREPARE a transaction that has executed any operations involving temporary
tables or the session’s temporary namespace, created any cursors WITH HOLD, or executed LISTEN,
UNLISTEN, or NOTIFY. Those features are too tightly tied to the current session to be useful in a transaction to
be prepared.

If the transaction modified any run-time parameters with SET (without the LOCAL option), those effects persist
after PREPARE TRANSACTION, and will not be affected by any later COMMIT PREPARED or ROLLBACK PREPARED.
Thus, in this one respect PREPARE TRANSACTION acts more like COMMIT than ROLLBACK.

All currently available prepared transactions are listed in the pg_prepared_xacts system view.

Caution
It is unwise to leave transactions in the prepared state for a long time. This will interfere with the ability of
VACUUM to reclaim storage, and in extreme cases could cause the database to shut down to prevent
transaction ID wraparound (see Section 25.1.5). Keep in mind also that the transaction continues to hold
whatever locks it held. The intended usage of the feature is that a prepared transaction will normally be
committed or rolled back as soon as an external transaction manager has verified that other databases are
also prepared to commit.

If you have not set up an external transaction manager to track prepared transactions and ensure they get
closed out promptly, it is best to keep the prepared-transaction feature disabled by setting
max_prepared_transactions to zero. This will prevent accidental creation of prepared transactions that
might then be forgotten and eventually cause problems.

Examples

Prepare the current transaction for two-phase commit, using foobar as the transaction identifier:

PREPARE TRANSACTION 'foobar';

Compatibility
PREPARE TRANSACTION is a IvorySQL extension. It is intended for use by external transaction management
systems, some of which are covered by standards (such as X/Open XA), but the SQL side of those systems is
not standardized.

ROLLBACK — abort the current transaction
Synopsis

ROLLBACK [WORK | TRANSACTION] [AND [NO] CHAIN]

Description
ROLLBACK rolls back the current transaction and causes all the updates made by the transaction to be
discarded.

Parameters
• WORK TRANSACTION

Optional key words. They have no effect.

• AND CHAIN

107

https://www.postgresql.org/docs/current/view-pg-prepared-xacts.html
https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-MAX-PREPARED-TRANSACTIONS

If AND CHAIN is specified, a new transaction is immediately started with the same transaction characteristics
(see SET TRANSACTION) as the just finished one. Otherwise, no new transaction is started.

Notes

Use COMMIT to successfully terminate a transaction.

Issuing ROLLBACK outside of a transaction block emits a warning and otherwise has no effect. ROLLBACK AND
CHAIN outside of a transaction block is an error.

Examples
To abort all changes:

ROLLBACK;

Compatibility
The command ROLLBACK conforms to the SQL standard. The form ROLLBACK TRANSACTION is a IvorySQL
extension.

ROLLBACK PREPARED — cancel a transaction that was earlier
prepared for two-phase commit
Synopsis

ROLLBACK PREPARED transaction_id

Description
ROLLBACK PREPARED rolls back a transaction that is in prepared state.

Parameters
• transaction_id

The transaction identifier of the transaction that is to be rolled back.

Notes

To roll back a prepared transaction, you must be either the same user that executed the transaction
originally, or a superuser. But you do not have to be in the same session that executed the transaction.

This command cannot be executed inside a transaction block. The prepared transaction is rolled back
immediately.

All currently available prepared transactions are listed in the pg_prepared_xacts system view.

Examples
Roll back the transaction identified by the transaction identifier foobar:

ROLLBACK PREPARED 'foobar';

108

https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-commit.html
https://www.postgresql.org/docs/current/view-pg-prepared-xacts.html

Compatibility
ROLLBACK PREPARED is a IvorySQL extension. It is intended for use by external transaction management
systems, some of which are covered by standards (such as X/Open XA), but the SQL side of those systems is
not standardized.

SAVEPOINT — define a new savepoint within the current
transaction
Synopsis

SAVEPOINT savepoint_name

Description
SAVEPOINT establishes a new savepoint within the current transaction.

A savepoint is a special mark inside a transaction that allows all commands that are executed after it was
established to be rolled back, restoring the transaction state to what it was at the time of the savepoint.

Parameters
• savepoint_name

The name to give to the new savepoint. If savepoints with the same name already exist, they will be
inaccessible until newer identically-named savepoints are released.

Notes

Use ROLLBACK TO to rollback to a savepoint. Use RELEASE SAVEPOINT to destroy a savepoint, keeping the
effects of commands executed after it was established.

Savepoints can only be established when inside a transaction block. There can be multiple savepoints
defined within a transaction.

Examples
To establish a savepoint and later undo the effects of all commands executed after it was established:

BEGIN;
 INSERT INTO table1 VALUES (1);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (2);
 ROLLBACK TO SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (3);
COMMIT;

The above transaction will insert the values 1 and 3, but not 2.

To establish and later destroy a savepoint:

BEGIN;

109

https://www.postgresql.org/docs/current/sql-rollback-to.html
https://www.postgresql.org/docs/current/sql-release-savepoint.html

 INSERT INTO table1 VALUES (3);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (4);
 RELEASE SAVEPOINT my_savepoint;
COMMIT;

The above transaction will insert both 3 and 4.

To use a single savepoint name:

BEGIN;
 INSERT INTO table1 VALUES (1);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (2);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (3);

 -- rollback to the second savepoint
 ROLLBACK TO SAVEPOINT my_savepoint;
 SELECT * FROM table1; -- shows rows 1 and 2

 -- release the second savepoint
 RELEASE SAVEPOINT my_savepoint;

 -- rollback to the first savepoint
 ROLLBACK TO SAVEPOINT my_savepoint;
 SELECT * FROM table1; -- shows only row 1
COMMIT;

The above transaction shows row 3 being rolled back first, then row 2.

Compatibility
SQL requires a savepoint to be destroyed automatically when another savepoint with the same name is
established. In IvorySQL, the old savepoint is kept, though only the more recent one will be used when
rolling back or releasing. (Releasing the newer savepoint with RELEASE SAVEPOINT will cause the older one to
again become accessible to ROLLBACK TO SAVEPOINT and RELEASE SAVEPOINT.) Otherwise, SAVEPOINT is fully
SQL conforming.

SET CONSTRAINTS — set constraint check timing for the
current transaction
Synopsis

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

110

Description
SET CONSTRAINTS sets the behavior of constraint checking within the current transaction. IMMEDIATE
constraints are checked at the end of each statement. DEFERRED constraints are not checked until
transaction commit. Each constraint has its own IMMEDIATE or DEFERRED mode.

Upon creation, a constraint is given one of three characteristics: DEFERRABLE INITIALLY DEFERRED,
DEFERRABLE INITIALLY IMMEDIATE, or NOT DEFERRABLE. The third class is always IMMEDIATE and is not
affected by the SET CONSTRAINTS command. The first two classes start every transaction in the indicated
mode, but their behavior can be changed within a transaction by SET CONSTRAINTS.

SET CONSTRAINTS with a list of constraint names changes the mode of just those constraints (which must all
be deferrable). Each constraint name can be schema-qualified. The current schema search path is used to
find the first matching name if no schema name is specified. SET CONSTRAINTS ALL changes the mode of all
deferrable constraints.

When SET CONSTRAINTS changes the mode of a constraint from DEFERRED to IMMEDIATE, the new mode takes
effect retroactively: any outstanding data modifications that would have been checked at the end of the
transaction are instead checked during the execution of the SET CONSTRAINTS command. If any such
constraint is violated, the SET CONSTRAINTS fails (and does not change the constraint mode). Thus, SET
CONSTRAINTS can be used to force checking of constraints to occur at a specific point in a transaction.

Currently, only UNIQUE, PRIMARY KEY, REFERENCES (foreign key), and EXCLUDE constraints are affected by this
setting. NOT NULL and CHECK constraints are always checked immediately when a row is inserted or modified
(not at the end of the statement). Uniqueness and exclusion constraints that have not been declared
DEFERRABLE are also checked immediately.

The firing of triggers that are declared as “constraint triggers” is also controlled by this setting — they fire
at the same time that the associated constraint should be checked.

Notes

Because IvorySQL does not require constraint names to be unique within a schema (but only per-table), it is
possible that there is more than one match for a specified constraint name. In this case SET CONSTRAINTS will
act on all matches. For a non-schema-qualified name, once a match or matches have been found in some
schema in the search path, schemas appearing later in the path are not searched.

This command only alters the behavior of constraints within the current transaction. Issuing this outside of a
transaction block emits a warning and otherwise has no effect.

Compatibility
This command complies with the behavior defined in the SQL standard, except for the limitation that, in
IvorySQL, it does not apply to NOT NULL and CHECK constraints. Also, IvorySQL checks non-deferrable
uniqueness constraints immediately, not at end of statement as the standard would suggest.

SET TRANSACTION — set the characteristics of the current
transaction
Synopsis

SET TRANSACTION transaction_mode [, ...]
SET TRANSACTION SNAPSHOT snapshot_id
SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode [, ...]

where transaction_mode is one of:

111

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ
UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE

Description
The SET TRANSACTION command sets the characteristics of the current transaction. It has no effect on any
subsequent transactions. SET SESSION CHARACTERISTICS sets the default transaction characteristics for
subsequent transactions of a session. These defaults can be overridden by SET TRANSACTION for an
individual transaction.

The available transaction characteristics are the transaction isolation level, the transaction access mode
(read/write or read-only), and the deferrable mode. In addition, a snapshot can be selected, though only for
the current transaction, not as a session default.

The isolation level of a transaction determines what data the transaction can see when other transactions
are running concurrently:

• READ COMMITTED

A statement can only see rows committed before it began. This is the default.

• REPEATABLE READ

All statements of the current transaction can only see rows committed before the first query or data-
modification statement was executed in this transaction.

• SERIALIZABLE

All statements of the current transaction can only see rows committed before the first query or data-
modification statement was executed in this transaction. If a pattern of reads and writes among concurrent
serializable transactions would create a situation which could not have occurred for any serial (one-at-a-
time) execution of those transactions, one of them will be rolled back with a serialization_failure error.

The SQL standard defines one additional level, READ UNCOMMITTED. In IvorySQL READ UNCOMMITTED is treated
as READ COMMITTED.

The transaction isolation level cannot be changed after the first query or data-modification statement
(SELECT, INSERT, DELETE, UPDATE, FETCH, or COPY) of a transaction has been executed. See Chapter 13 for more
information about transaction isolation and concurrency control.

The transaction access mode determines whether the transaction is read/write or read-only. Read/write is
the default. When a transaction is read-only, the following SQL commands are disallowed: INSERT, UPDATE,
DELETE, and COPY FROM if the table they would write to is not a temporary table; all CREATE, ALTER, and DROP
commands; COMMENT, GRANT, REVOKE, TRUNCATE; and EXPLAIN ANALYZE and EXECUTE if the command they
would execute is among those listed. This is a high-level notion of read-only that does not prevent all writes
to disk.

The DEFERRABLE transaction property has no effect unless the transaction is also SERIALIZABLE and READ
ONLY. When all three of these properties are selected for a transaction, the transaction may block when first
acquiring its snapshot, after which it is able to run without the normal overhead of a SERIALIZABLE
transaction and without any risk of contributing to or being canceled by a serialization failure. This mode is
well suited for long-running reports or backups.

The SET TRANSACTION SNAPSHOT command allows a new transaction to run with the same snapshot as an
existing transaction. The pre-existing transaction must have exported its snapshot with the
pg_export_snapshot function. That function returns a snapshot identifier, which must be given to SET
TRANSACTION SNAPSHOT to specify which snapshot is to be imported. The identifier must be written as a string
literal in this command, for example '00000003-0000001B-1'. SET TRANSACTION SNAPSHOT can only be

112

https://www.postgresql.org/docs/current/mvcc.html

executed at the start of a transaction, before the first query or data-modification statement (SELECT, INSERT,
DELETE, UPDATE, FETCH, or COPY) of the transaction. Furthermore, the transaction must already be set to
SERIALIZABLE or REPEATABLE READ isolation level (otherwise, the snapshot would be discarded immediately,
since READ COMMITTED mode takes a new snapshot for each command). If the importing transaction uses
SERIALIZABLE isolation level, then the transaction that exported the snapshot must also use that isolation
level. Also, a non-read-only serializable transaction cannot import a snapshot from a read-only transaction.

Notes

If SET TRANSACTION is executed without a prior START TRANSACTION or BEGIN, it emits a warning and otherwise
has no effect.

It is possible to dispense with SET TRANSACTION by instead specifying the desired transaction_modes in
BEGIN or START TRANSACTION. But that option is not available for SET TRANSACTION SNAPSHOT.

The session default transaction modes can also be set or examined via the configuration parameters
default_transaction_isolation, default_transaction_read_only, and default_transaction_deferrable. (In fact
SET SESSION CHARACTERISTICS is just a verbose equivalent for setting these variables with SET.) This means
the defaults can be set in the configuration file, via ALTER DATABASE, etc. Consult Chapter 20 for more
information.

The current transaction’s modes can similarly be set or examined via the configuration parameters
transaction_isolation, transaction_read_only, and transaction_deferrable. Setting one of these parameters
acts the same as the corresponding SET TRANSACTION option, with the same restrictions on when it can be
done. However, these parameters cannot be set in the configuration file, or from any source other than live
SQL.

Examples
To begin a new transaction with the same snapshot as an already existing transaction, first export the
snapshot from the existing transaction. That will return the snapshot identifier, for example:

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SELECT pg_export_snapshot();
 pg_export_snapshot

 00000003-0000001B-1
(1 row)

Then give the snapshot identifier in a SET TRANSACTION SNAPSHOT command at the beginning of the newly
opened transaction:

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SET TRANSACTION SNAPSHOT '00000003-0000001B-1';

Compatibility
These commands are defined in the SQL standard, except for the DEFERRABLE transaction mode and the SET
TRANSACTION SNAPSHOT form, which are IvorySQL extensions.

SERIALIZABLE is the default transaction isolation level in the standard. In IvorySQL the default is ordinarily
READ COMMITTED, but you can change it as mentioned above.

In the SQL standard, there is one other transaction characteristic that can be set with these commands: the
size of the diagnostics area. This concept is specific to embedded SQL, and therefore is not implemented in

113

https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TRANSACTION-ISOLATION
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TRANSACTION-READ-ONLY
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TRANSACTION-DEFERRABLE
https://www.postgresql.org/docs/current/runtime-config.html
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-TRANSACTION-ISOLATION
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-TRANSACTION-READ-ONLY
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-TRANSACTION-DEFERRABLE

the IvorySQL server.

The SQL standard requires commas between successive transaction_modes, but for historical reasons
IvorySQL allows the commas to be omitted.

START TRANSACTION — start a transaction block
Synopsis

START TRANSACTION [transaction_mode [, ...]]

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ
UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE

Description
This command begins a new transaction block. If the isolation level, read/write mode, or deferrable mode is
specified, the new transaction has those characteristics, as if SET TRANSACTION was executed. This is the
same as the BEGIN command.

Parameters
Refer to SET TRANSACTION for information on the meaning of the parameters to this statement.

Compatibility
In the standard, it is not necessary to issue START TRANSACTION to start a transaction block: any SQL
command implicitly begins a block. IvorySQL’s behavior can be seen as implicitly issuing a COMMIT after
each command that does not follow START TRANSACTION (or BEGIN), and it is therefore often called
“autocommit”. Other relational database systems might offer an autocommit feature as a convenience.

The DEFERRABLE transaction_mode is a IvorySQL language extension.

The SQL standard requires commas between successive transaction_modes, but for historical reasons
IvorySQL allows the commas to be omitted.

See also the compatibility section of SET TRANSACTION.

Sql Reference

Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens
are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

114

https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-begin.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one command
can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands or
parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of INSERT
also requires a VALUES in order to be complete.

Identifiers and Key Words
Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that is, words
that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of identifiers. They
identify names of tables, columns, or other database objects, depending on the command they are used in.
Therefore they are sometimes simply called “names”. Key words and identifiers have the same lexical
structure, meaning that one cannot know whether a token is an identifier or a key word without knowing the
language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and non-
Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according to
the letter of the SQL standard, so their use might render applications less portable. The SQL standard will
not define a key word that contains digits or starts or ends with an underscore, so identifiers of this form are
safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written in
commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier length is 63
bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant in
src/include/pg_config_manual.h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing an
arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier, never a
key word. So "select" could be used to refer to a column or table named “select”, whereas an unquoted
select would be taken as a key word and would therefore provoke a parse error when used where a table or
column name is expected. The example can be written with quoted identifiers like this:

115

https://www.postgresql.org/docs/current/sql-keywords-appendix.html

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise not
be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower case.
For example, the identifiers FOO, foo, and "foo" are considered the same by IvorySQL, but "Foo" and "FOO"
are different from these three and each other. (The folding of unquoted names to lower case in IvorySQL is
incompatible with the SQL standard, which says that unquoted names should be folded to upper case.
Thus, foo should be equivalent to "FOO" not "foo" according to the standard. If you want to write portable
applications you are advised to always quote a particular name or never quote it.)

A variant of quoted identifiers allows including escaped Unicode characters identified by their code points.
This variant starts with U& (upper or lower case U followed by ampersand) immediately before the opening
double quote, without any spaces in between, for example U&"foo". (Note that this creates an ambiguity
with the operator &. Use spaces around the operator to avoid this problem.) Inside the quotes, Unicode
characters can be specified in escaped form by writing a backslash followed by the four-digit hexadecimal
code point number or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal
code point number. For example, the identifier "data" could be written as

U&"d\0061t\+000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause after the
string, for example:

U&"d!0061t!+000061" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single quotes,
not double quotes, after UESCAPE.

To include the escape character in the identifier literally, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makes this unnecessary. (Surrogate pairs are not stored directly, but are combined into a single code point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences is
converted to the actual server encoding; an error is reported if that’s not possible.

Constants
There are three kinds of implicitly-typed constants in IvorySQL: strings, bit strings, and numbers. Constants
can also be specified with explicit types, which can enable more accurate representation and more efficient
handling by the system. These alternatives are discussed in the following subsections.

String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes ('), for example

116

'This is a string'. To include a single-quote character within a string constant, write two adjacent single
quotes, e.g., 'Dianne''s horse'. Note that this is not the same as a double-quote character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated and
effectively treated as if the string had been written as one constant. For example:

SELECT 'foo'
'bar';

is equivalent to:

SELECT 'foobar';

but:

SELECT 'foo' 'bar';

is not valid syntax. (This slightly bizarre behavior is specified by SQL; IvorySQL is following the standard.)

String Constants With C-Style Escapes

IvorySQL also accepts “escape” string constants, which are an extension to the SQL standard. An escape
string constant is specified by writing the letter E (upper or lower case) just before the opening single quote,
e.g., E’foo'. (When continuing an escape string constant across lines, write E only before the first opening
quote.) Within an escape string, a backslash character (\) begins a C-like backslash escape sequence, in
which the combination of backslash and following character(s) represent a special byte value.

Table 5.1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation
\b backspace
\f form feed
\n newline
\r carriage return
\t tab
`o, `*`oo*, `*`ooo*` (o = 0–7) octal byte value
\x*`h, `\x`hh` (h* = 0–9, A–F) hexadecimal byte value
\u*`xxxx, `\U`xxxxxxxx` (x* = 0–9, A–F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write two
backslashes (\\). Also, a single quote can be included in an escape string by writing \', in addition to the
normal way of ''.

It is your responsibility that the byte sequences you create, especially when using the octal or hexadecimal
escapes, compose valid characters in the server character set encoding. A useful alternative is to use
Unicode escapes or the alternative Unicode escape syntax, ; then the server will check that the character
conversion is possible.

Caution
If the configuration parameter standard_conforming_strings is off, then IvorySQL recognizes

117

https://www.postgresql.org/docs/current/runtime-config-compatible.html#GUC-STANDARD-CONFORMING-STRINGS

backslash escapes in both regular and escape string constants. However, as of IvorySQL 9.1, the
default is on, meaning that backslash escapes are recognized only in escape string constants. This
behavior is more standards-compliant, but might break applications which rely on the historical
behavior, where backslash escapes were always recognized. As a workaround, you can set this
parameter to off, but it is better to migrate away from using backslash escapes. If you need to use a
backslash escape to represent a special character, write the string constant with an E.In addition to
standard_conforming_strings, the configuration parameters escape_string_warning and
backslash_quote govern treatment of backslashes in string constants.The character with the code
zero cannot be in a string constant.

String Constants With Unicode Escapes

IvorySQL also supports another type of escape syntax for strings that allows specifying arbitrary Unicode
characters by code point. A Unicode escape string constant starts with U& (upper or lower case letter U
followed by ampersand) immediately before the opening quote, without any spaces in between, for example
U&'foo'. (Note that this creates an ambiguity with the operator &. Use spaces around the operator to avoid
this problem.) Inside the quotes, Unicode characters can be specified in escaped form by writing a backslash
followed by the four-digit hexadecimal code point number or alternatively a backslash followed by a plus
sign followed by a six-digit hexadecimal code point number. For example, the string 'data' could be written
as

U&'d\0061t\+000061'

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&'\0441\043B\043E\043D'

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause after the
string, for example:

U&'d!0061t!+000061' UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

To include the escape character in the string literally, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makes this unnecessary. (Surrogate pairs are not stored directly, but are combined into a single code point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences is
converted to the actual server encoding; an error is reported if that’s not possible.

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients that
parse the SQL statements to the point that it could lead to SQL injections and similar security issues. If the
parameter is set to off, this syntax will be rejected with an error message.

Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those must
be doubled. To allow more readable queries in such situations, IvorySQL provides another way, called
“dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($), an
optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that

118

https://www.postgresql.org/docs/current/runtime-config-compatible.html#GUC-ESCAPE-STRING-WARNING
https://www.postgresql.org/docs/current/runtime-config-compatible.html#GUC-BACKSLASH-QUOTE
https://www.postgresql.org/docs/current/runtime-config-compatible.html#GUC-STANDARD-CONFORMING-STRINGS

makes up the string content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. For
example, here are two different ways to specify the string “Dianne’s horse” using dollar quoting:

$$Dianne's horse$$
$SomeTag$Dianne's horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always written
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This is
most commonly used in writing function definitions. For example:

$function$
BEGIN
 RETURN ($1 ~ q[\t\r\n\v\\]q);
END;
$function$

Here, the sequence q[\t\r\n\v\\]q represents a dollar-quoted literal string [\t\r\n\v\\], which will be
recognized when the function body is executed by IvorySQL. But since the sequence does not match the
outer dollar quoting delimiter $function$, it is just some more characters within the constant so far as the
outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain a dollar sign. Tags are case sensitive, so tagString contenttag is correct, but
TAGString contenttag is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write complicated
string literals than the standard-compliant single quote syntax. It is particularly useful when representing
string constants inside other constants, as is often needed in procedural function definitions. With single-
quote syntax, each backslash in the above example would have to be written as four backslashes, which
would be reduced to two backslashes in parsing the original string constant, and then to one when the inner
string constant is re-parsed during function execution.

Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before the
opening quote (no intervening whitespace), e.g., B'1001'. The only characters allowed within bit-string
constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper or lower
case), e.g., X'1FF'. This notation is equivalent to a bit-string constant with four binary digits for each
hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string constants.
Dollar quoting cannot be used in a bit-string constant.

Numeric Constants

Numeric constants are accepted in these general forms:

119

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

where digits is one or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present. There
cannot be any spaces or other characters embedded in the constant. Note that any leading plus or minus
sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42 3.5 4. .001 5e2 1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be type
integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint if its value fits in
type bigint (64 bits); otherwise it is taken to be type numeric. Constants that contain decimal points and/or
exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type
depending on context. When necessary, you can force a numeric value to be interpreted as a specific data
type by casting it. For example, you can force a numeric value to be treated as type real (float4) by writing:

REAL '1.23' -- string style
1.23::REAL -- IvorySQL (historical) style

These are actually just special cases of the general casting notations discussed next.

Constants Of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'
'string'::type
CAST ('string' AS type)

The string constant’s text is passed to the input conversion routine for the type called type. The result is a
constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to the type
the constant must be (for example, when it is assigned directly to a table column), in which case it is
automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:

typename ('string')

but not all type names can be used in this way.

120

The ::, CAST(), and function-call syntaxes can also be used to specify run-time type conversions of arbitrary
expressions. To avoid syntactic ambiguity, the `type 'string'` syntax can only be used to specify the type of
a simple literal constant. Another restriction on the `type 'string'` syntax is that it does not work for array
types; use :: or CAST() to specify the type of an array constant.

The CAST() syntax conforms to SQL. The `type 'string'` syntax is a generalization of the standard: SQL
specifies this syntax only for a few data types, but IvorySQL allows it for all types. The syntax with :: is
historical IvorySQL usage, as is the function-call syntax.

Operators
An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following list:

\+ - * / < > = ~ ! @ # % ^ & | ` ?

There are a few restrictions on operator names, however:

• -- and /* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

• A multiple-character operator name cannot end in + or -, unless the name also contains at least one of
these characters:

~ ! @ # % ^ & | ` ?

For example, @- is an allowed operator name, but *- is not. This restriction allows IvorySQL to parse SQL-
compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent operators
with spaces to avoid ambiguity. For example, if you have defined a prefix operator named @, you cannot
write X*@Y; you must write X* @Y to ensure that IvorySQL reads it as two operator names not one.

Special Characters
Some characters that are not alphanumeric have a special meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This
section only exists to advise the existence and summarize the purposes of these characters.

• A dollar sign ($) followed by digits is used to represent a positional parameter in the body of a function
definition or a prepared statement. In other contexts the dollar sign can be part of an identifier or a
dollar-quoted string constant.

• Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

• Brackets ([]) are used to select the elements of an array.
• Commas (,) are used in some syntactical constructs to separate the elements of a list.
• The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command, except

within a string constant or quoted identifier.
• The colon (:) is used to select “slices” from arrays. In certain SQL dialects (such as Embedded SQL),

the colon is used to prefix variable names.
• The asterisk (*) is used in some contexts to denote all the fields of a table row or composite value. It also

has a special meaning when used as the argument of an aggregate function, namely that the aggregate
does not require any explicit parameter.

• The period (.) is used in numeric constants, and to separate schema, table, and column names.

121

Comments
A comment is a sequence of characters beginning with double dashes and extending to the end of the line,
e.g.:

-- This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
 * with nesting: /* nested block comment */
 */

where the comment begins with / and extends to the matching occurrence of/. These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code that
might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced by
whitespace.

Operator Precedence
Table 5.2 shows the precedence and associativity of the operators in IvorySQL. Most operators have the
same precedence and are left-associative. The precedence and associativity of the operators is hard-wired
into the parser. Add parentheses if you want an expression with multiple operators to be parsed in some
other way than what the precedence rules imply.

Table 5.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
. left table/column name separator
:: left IvorySQL-style typecast
[] left array element selection
+ - right unary plus, unary minus
^ left exponentiation
* / % left multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left all other native and user-defined

operators
BETWEEN IN LIKE ILIKE SIMILAR range containment, set

membership, string matching
< > = ⇐ >= <> comparison operators
IS ISNULL NOTNULL IS TRUE, IS FALSE, IS NULL, IS

DISTINCT FROM, etc.
NOT right logical negation
AND left logical conjunction
OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a “” operator for some custom data

122

https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-PRECEDENCE-TABLE

type it will have the same precedence as the built-in “” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:

SELECT 3 OPERATOR(pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 5.2 for “any other
operator”. This is true no matter which specific operator appears inside OPERATOR().

Note
In particular, ⇐ >= and <> used to be treated as generic operators; IS tests used to have higher
priority; and NOT BETWEEN and related constructs acted inconsistently, being taken in some cases as
having the precedence of NOT rather than BETWEEN. These rules were changed for better compliance
with the SQL standard and to reduce confusion from inconsistent treatment of logically equivalent
constructs. In most cases, these changes will result in no behavioral change, or perhaps in “no such
operator” failures which can be resolved by adding parentheses. However there are corner cases in
which a query might change behavior without any parsing error being reported.

Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command, as new
column values in INSERT or UPDATE, or in search conditions in a number of commands. The result of a value
expression is sometimes called a scalar, to distinguish it from the result of a table expression (which is a
table). Value expressions are therefore also called scalar expressions (or even simply expressions). The
expression syntax allows the calculation of values from primitive parts using arithmetic, logical, set, and
other operations.

A value expression is one of the following:

• A constant or literal value
• A column reference
• A positional parameter reference, in the body of a function definition or prepared statement
• A subscripted expression
• A field selection expression
• An operator invocation
• A function call
• An aggregate expression
• A window function call
• A type cast
• A collation expression
• A scalar subquery
• An array constructor
• A row constructor
• Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do not
follow any general syntax rules. These generally have the semantics of a function or operator . An example is
the IS NULL clause.

123

https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-PRECEDENCE-TABLE

Column References

A column can be referenced in the form:

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table defined by
means of a FROM clause. The correlation name and separating dot can be omitted if the column name is
unique across all the tables being used in the current query.

Positional Parameters
A positional parameter reference is used to indicate a value that is supplied externally to an SQL statement.
Parameters are used in SQL function definitions and in prepared queries. Some client libraries also support
specifying data values separately from the SQL command string, in which case parameters are used to refer
to the out-of-line data values. The form of a parameter reference is:

$number

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept(text) RETURNS dept
 AS $$ SELECT * FROM dept WHERE name = $1 $$
 LANGUAGE SQL;

Here the $1 references the value of the first function argument whenever the function is invoked.

Subscripts
If an expression yields a value of an array type, then a specific element of the array value can be extracted by
writing

expression[subscript]

or multiple adjacent elements (an “array slice”) can be extracted by writing

expression[lower_subscript:upper_subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which will be
rounded to the nearest integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

mytable.arraycolumn[4]
mytable.two_d_column[17][34]
$1[10:42]

124

(arrayfunction(a,b))[42]

The parentheses in the last example are required.

Field Selection
If an expression yields a value of a composite type (row type), then a specific field of the row can be extracted
by writing

expression.fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)).col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An important
special case is extracting a field from a table column that is of a composite type:

(compositecol).somefield
(mytable.compositecol).somefield

The parentheses are required here to show that compositecol is a column name not a table name, or that
mytable is a table name not a schema name in the second case.

You can ask for all fields of a composite value by writing .*:

(compositecol).*

This notation behaves differently depending on context.

Operator Invocations

There are two possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)

where the operator token follows the syntax rules , or is one of the key words AND, OR, and NOT, or is a
qualified operator name in the form:

OPERATOR(schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have been
defined by the system or the user.

125

Function Calls
The syntax for a function call is the name of a function (possibly qualified with a schema name), followed by
its argument list enclosed in parentheses:

function_name ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt(2)

Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users,

The arguments can optionally have names attached.

Note
A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the notations
col(table) and table.col are interchangeable. This behavior is not SQL-standard but is provided in
IvorySQL because it allows use of functions to emulate “computed fields”.

Aggregate Expressions
An aggregate expression represents the application of an aggregate function across the rows selected by a
query. An aggregate function reduces multiple inputs to a single output value, such as the sum or average of
the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ...] [order_by_clause]) [FILTER (WHERE
filter_clause)]
aggregate_name (ALL expression [, ...] [order_by_clause]) [FILTER (WHERE
filter_clause)]
aggregate_name (DISTINCT expression [, ...] [order_by_clause]) [FILTER (WHERE
filter_clause)]
aggregate_name (*) [FILTER (WHERE filter_clause)]
aggregate_name ([expression [, ...]]) WITHIN GROUP (order_by_clause) [FILTER
(WHERE filter_clause)]

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name) and
expression is any value expression that does not itself contain an aggregate expression or a window
function call. The optional order_by_clause and filter_clause are described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second form is the
same as the first, since ALL is the default. The third form invokes the aggregate once for each distinct value of
the expression (or distinct set of values, for multiple expressions) found in the input rows. The fourth form
invokes the aggregate once for each input row; since no particular input value is specified, it is generally only
useful for the count() aggregate function. The last form is used with *ordered-set aggregate
functions, which are described below.

126

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield null
are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

For example, count(*) yields the total number of input rows; count(f1) yields the number of input rows in
which f1 is non-null, since count ignores nulls; and count(distinct f1) yields the number of distinct non-
null values of f1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases this does
not matter; for example, min produces the same result no matter what order it receives the inputs in.
However, some aggregate functions (such as array_agg and string_agg) produce results that depend on the
ordering of the input rows. When using such an aggregate, the optional order_by_clause can be used to
specify the desired ordering. The order_by_clause has the same syntax as for a query-level ORDER BY clause,
except that its expressions are always just expressions and cannot be output-column names or numbers. For
example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all the
aggregate arguments. For example, write this:

SELECT string_agg(a, ',' ORDER BY a) FROM table;

not this:

SELECT string_agg(a ORDER BY a, ',') FROM table; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless since it’s a constant).

If DISTINCT is specified in addition to an order_by_clause, then all the ORDER BY expressions must match
regular arguments of the aggregate; that is, you cannot sort on an expression that is not included in the
DISTINCT list.

Note
The ability to specify both DISTINCT and ORDER BY in an aggregate function is a IvorySQL extension.

Placing ORDER BY within the aggregate’s regular argument list, as described so far, is used when ordering
the input rows for general-purpose and statistical aggregates, for which ordering is optional. There is a
subclass of aggregate functions called ordered-set aggregates for which an order_by_clause is required,
usually because the aggregate’s computation is only sensible in terms of a specific ordering of its input
rows. Typical examples of ordered-set aggregates include rank and percentile calculations. For an ordered-
set aggregate, the order_by_clause is written inside WITHIN GROUP (…), as shown in the final syntax
alternative above. The expressions in the order_by_clause are evaluated once per input row just like regular
aggregate arguments, sorted as per the order_by_clause's requirements, and fed to the aggregate function
as input arguments. (This is unlike the case for a non-WITHIN GROUP order_by_clause, which is not treated as
argument(s) to the aggregate function.) The argument expressions preceding WITHIN GROUP, if any, are called
direct arguments to distinguish them from the aggregated arguments listed in the order_by_clause. Unlike
regular aggregate arguments, direct arguments are evaluated only once per aggregate call, not once per
input row. This means that they can contain variables only if those variables are grouped by GROUP BY; this
restriction is the same as if the direct arguments were not inside an aggregate expression at all. Direct
arguments are typically used for things like percentile fractions, which only make sense as a single value per
aggregation calculation. The direct argument list can be empty; in this case, write just () not (*). (IvorySQL
will actually accept either spelling, but only the first way conforms to the SQL standard.)

127

An example of an ordered-set aggregate call is:

SELECT percentile_cont(0.5) WITHIN GROUP (ORDER BY income) FROM households;
 percentile_cont

 50489

which obtains the 50th percentile, or median, value of the income column from table households. Here, 0.5 is
a direct argument; it would make no sense for the percentile fraction to be a value varying across rows.

If FILTER is specified, then only the input rows for which the filter_clause evaluates to true are fed to the
aggregate function; other rows are discarded. For example:

SELECT
 count(*) AS unfiltered,
 count(*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
 unfiltered | filtered
------------+----------
 10 | 4
(1 row)

Other aggregate functions can be added by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command. It is
forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the results of
aggregates are formed.

When an aggregate expression appears in a subquery,the aggregate is normally evaluated over the rows of
the subquery. But an exception occurs if the aggregate’s arguments (and filter_clause if any) contain
only outer-level variables: the aggregate then belongs to the nearest such outer level, and is evaluated over
the rows of that query. The aggregate expression as a whole is then an outer reference for the subquery it
appears in, and acts as a constant over any one evaluation of that subquery. The restriction about appearing
only in the result list or HAVING clause applies with respect to the query level that the aggregate belongs to.

Window Function Calls
A window function call represents the application of an aggregate-like function over some portion of the
rows selected by a query. Unlike non-window aggregate calls, this is not tied to grouping of the selected
rows into a single output row — each row remains separate in the query output. However the window
function has access to all the rows that would be part of the current row’s group according to the grouping
specification (PARTITION BY list) of the window function call. The syntax of a window function call is one of
the following:

function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)]
OVER window_name
function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)]
OVER (window_definition)
function_name (*) [FILTER (WHERE filter_clause)] OVER window_name
function_name (*) [FILTER (WHERE filter_clause)] OVER (window_definition)

128

where window_definition has the syntax

[existing_window_name]
[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [,
...]]
[frame_clause]

The optional frame_clause can be one of

{ RANGE | ROWS | GROUPS } frame_start [frame_exclusion]
{ RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end [frame_exclusion]

where frame_start and frame_end can be one of

UNBOUNDED PRECEDING
offset PRECEDING
CURRENT ROW
offset FOLLOWING
UNBOUNDED FOLLOWING

and frame_exclusion can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TIES
EXCLUDE NO OTHERS

Here, expression represents any value expression that does not itself contain window function calls.

window_name is a reference to a named window specification defined in the query’s WINDOW clause.
Alternatively, a full window_definition can be given within parentheses, using the same syntax as for
defining a named window in the WINDOW clause; see the SELECT reference page for details. It’s worth
pointing out that OVER wname is not exactly equivalent to OVER (wname …); the latter implies copying and
modifying the window definition, and will be rejected if the referenced window specification includes a
frame clause.

The PARTITION BY clause groups the rows of the query into partitions, which are processed separately by the
window function. PARTITION BY works similarly to a query-level GROUP BY clause, except that its expressions
are always just expressions and cannot be output-column names or numbers. Without PARTITION BY, all
rows produced by the query are treated as a single partition. The ORDER BY clause determines the order in
which the rows of a partition are processed by the window function. It works similarly to a query-level ORDER
BY clause, but likewise cannot use output-column names or numbers. Without ORDER BY, rows are processed
in an unspecified order.

The frame_clause specifies the set of rows constituting the window frame, which is a subset of the current
partition, for those window functions that act on the frame instead of the whole partition. The set of rows in
the frame can vary depending on which row is the current row. The frame can be specified in RANGE, ROWS or
GROUPS mode; in each case, it runs from the frame_start to the frame_end. If frame_end is omitted, the end
defaults to CURRENT ROW.

129

https://www.postgresql.org/docs/current/sql-select.html

A frame_start of UNBOUNDED PRECEDING means that the frame starts with the first row of the partition, and
similarly a frame_end of UNBOUNDED FOLLOWING means that the frame ends with the last row of the partition.

In RANGE or GROUPS mode, a frame_start of CURRENT ROW means the frame starts with the current row’s first
peer row (a row that the window’s ORDER BY clause sorts as equivalent to the current row), while a
frame_end of CURRENT ROW means the frame ends with the current row’s last peer row. In ROWS mode,
CURRENT ROW simply means the current row.

In the offset PRECEDING and offset FOLLOWING frame options, the offset must be an expression not
containing any variables, aggregate functions, or window functions. The meaning of the offset depends on
the frame mode:

• In ROWS mode, the offset must yield a non-null, non-negative integer, and the option means that the
frame starts or ends the specified number of rows before or after the current row.

• In GROUPS mode, the offset again must yield a non-null, non-negative integer, and the option means
that the frame starts or ends the specified number of peer groups before or after the current row’s peer
group, where a peer group is a set of rows that are equivalent in the ORDER BY ordering. (There must be
an ORDER BY clause in the window definition to use GROUPS mode.)

• In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The offset
specifies the maximum difference between the value of that column in the current row and its value in
preceding or following rows of the frame. The data type of the offset expression varies depending on
the data type of the ordering column. For numeric ordering columns it is typically of the same type as the
ordering column, but for datetime ordering columns it is an interval. For example, if the ordering
column is of type date or timestamp, one could write RANGE BETWEEN '1 day' PRECEDING AND '10 days'
FOLLOWING. The offset is still required to be non-null and non-negative, though the meaning of “non-
negative” depends on its data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition, so that
for rows near the partition ends the frame might contain fewer rows than elsewhere.

Notice that in both ROWS and GROUPS mode, 0 PRECEDING and 0 FOLLOWING are equivalent to CURRENT ROW.
This normally holds in RANGE mode as well, for an appropriate data-type-specific meaning of “zero”.

The frame_exclusion option allows rows around the current row to be excluded from the frame, even if they
would be included according to the frame start and frame end options. EXCLUDE CURRENT ROW excludes the
current row from the frame. EXCLUDE GROUP excludes the current row and its ordering peers from the frame.
EXCLUDE TIES excludes any peers of the current row from the frame, but not the current row itself. EXCLUDE
NO OTHERS simply specifies explicitly the default behavior of not excluding the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW. With ORDER BY, this sets the frame to be all rows from the partition start up
through the current row’s last ORDER BY peer. Without ORDER BY, this means all rows of the partition are
included in the window frame, since all rows become peers of the current row.

Restrictions are that frame_start cannot be UNBOUNDED FOLLOWING, frame_end cannot be UNBOUNDED
PRECEDING, and the frame_end choice cannot appear earlier in the above list of frame_start and frame_end
options than the frame_start choice does — for example RANGE BETWEEN CURRENT ROW AND `offset
PRECEDING` is not allowed. But, for example, ROWS BETWEEN 7 PRECEDING AND 8 PRECEDING is allowed, even
though it would never select any rows.

If FILTER is specified, then only the input rows for which the filter_clause evaluates to true are fed to the
window function; other rows are discarded. Only window functions that are aggregates accept a FILTER
clause.

Other window functions can be added by the user. Also, any built-in or user-defined general-purpose or
statistical aggregate can be used as a window function. (Ordered-set and hypothetical-set aggregates
cannot presently be used as window functions.)

The syntaxes using are used for calling parameter-less aggregate functions as window functions,
for example count() OVER (PARTITION BY x ORDER BY y). The asterisk (*) is customarily not used for
window-specific functions. Window-specific functions do not allow DISTINCT or ORDER BY to be used within
the function argument list.

130

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

Type Casts
A type cast specifies a conversion from one data type to another. IvorySQL accepts two equivalent syntaxes
for type casts:

CAST (expression AS type)
expression::type

The CAST syntax conforms to SQL; the syntax with :: is historical IvorySQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion. The
cast will succeed only if a suitable type conversion operation has been defined. Notice that this is subtly
different from the use of casts with constants. A cast applied to an unadorned string literal represents the
initial assignment of a type to a literal constant value, and so it will succeed for any type (if the contents of
the string literal are acceptable input syntax for the data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply a
type cast in such cases. However, automatic casting is only done for casts that are marked “OK to apply
implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This restriction
is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:

typename (expression)

However, this only works for types whose names are also valid as function names. For example, double
precision cannot be used this way, but the equivalent float8 can. Also, the names interval, time, and
timestamp can only be used in this fashion if they are double-quoted, because of syntactic conflicts.
Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably be avoided.

Note
The function-like syntax is in fact just a function call. When one of the two standard cast syntaxes is
used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type, and
thus the “function-like syntax” is nothing more than a direct invocation of the underlying
conversion function. Obviously, this is not something that a portable application should rely on. For
further details see CREATE CAST.

Collation Expressions
The COLLATE clause overrides the collation of an expression. It is appended to the expression it applies to:

expr COLLATE collation

where collation is a possibly schema-qualified identifier. The COLLATE clause binds tighter than operators;
parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is involved in
the expression.

131

https://www.postgresql.org/docs/current/sql-createcast.html

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause, for
example:

SELECT a, b, c FROM tbl WHERE ... ORDER BY a COLLATE "C";

and overriding the collation of a function or operator call that has locale-sensitive results, for example:

SELECT * FROM tbl WHERE a > 'foo' COLLATE "C";

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we wish to
affect. It doesn’t matter which argument of the operator or function call the COLLATE clause is attached to,
because the collation that is applied by the operator or function is derived by considering all arguments, and
an explicit COLLATE clause will override the collations of all other arguments. (Attaching non-matching
COLLATE clauses to more than one argument, however, is an error.) Thus, this gives the same result as the
previous example:

SELECT * FROM tbl WHERE a COLLATE "C" > 'foo';

But this is an error:

SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C";

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable data
type boolean.

Scalar Subqueries
A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one column.
The SELECT query is executed and the single returned value is used in the surrounding value expression. It is
an error to use a query that returns more than one row or more than one column as a scalar subquery. (But
if, during a particular execution, the subquery returns no rows, there is no error; the scalar result is taken to
be null.) The subquery can refer to variables from the surrounding query, which will act as constants during
any one evaluation of the subquery.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
 FROM states;

Array Constructors
An array constructor is an expression that builds an array value using values for its member elements. A
simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket]. For example:

SELECT ARRAY[1,2,3+4];
 array

 {1,2,7}

132

(1 row)

By default, the array element type is the common type of the member expressions, determined using the
same rules as for UNION or CASE constructs. You can override this by explicitly casting the array constructor to
the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];
 array

 {1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually.

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the key
word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];
 array

 {{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2],[3,4]];
 array

 {{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce sub-
arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates automatically to
all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not only a
sub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);

INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr;
 array
--
 {{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

133

You can construct an empty array, but since it’s impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
 array

 {}
(1 row)

It is also possible to construct an array from the results of a subquery. In this form, the array constructor is
written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE 'bytea%');
 array
--
 {2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412}
(1 row)

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS a(i));
 array

 {{1,2},{2,4},{3,6},{4,8},{5,10}}
(1 row)

The subquery must return a single column. If the subquery’s output column is of a non-array type, the
resulting one-dimensional array will have an element for each row in the subquery result, with an element
type matching that of the subquery’s output column. If the subquery’s output column is of an array type,
the result will be an array of the same type but one higher dimension; in this case all the subquery rows must
yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY always begin with one.

Row Constructors
A row constructor is an expression that builds a row value (also called a composite value) using values for its
member fields. A row constructor consists of the key word ROW, a left parenthesis, zero or more expressions
(separated by commas) for the row field values, and finally a right parenthesis. For example:

SELECT ROW(1,2.5,'this is a test');

The key word ROW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue., which will be expanded to a list of the elements
of the row value, just as occurs when the . syntax is used at the top level of a SELECT list .For example,
if table t has columns f1 and f2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.f1, t.f2, 42) FROM t;

134

Note
Before IvorySQL 8.2, the . syntax was not expanded in row constructors, so that writing
ROW(t., 42) created a two-field row whose first field was another row value. The new behavior is
usually more useful. If you need the old behavior of nested row values, write the inner row value
without .*, for instance ROW(t, 42).

By default, the value created by a ROW expression is of an anonymous record type. If necessary, it can be cast
to a named composite type — either the row type of a table, or a composite type created with CREATE TYPE
AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable(f1 int, f2 float, f3 text);

CREATE FUNCTION getf1(mytable) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

-- No cast needed since only one getf1() exists
SELECT getf1(ROW(1,2.5,'this is a test'));
 getf1

 1
(1 row)

CREATE TYPE myrowtype AS (f1 int, f2 text, f3 numeric);

CREATE FUNCTION getf1(myrowtype) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(ROW(1,2.5,'this is a test'));
ERROR: function getf1(record) is not unique

SELECT getf1(ROW(1,2.5,'this is a test')::mytable);
 getf1

 1
(1 row)

SELECT getf1(CAST(ROW(11,'this is a test',2.5) AS myrowtype));
 getf1

 11
(1 row)

Row constructors can be used to build composite values to be stored in a composite-type table column, or
to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
values or test a row with IS NULL or IS NOT NULL, for example:

135

SELECT ROW(1,2.5,'this is a test') = ROW(1, 3, 'not the same');

SELECT ROW(table.*) IS NULL FROM table; -- detect all-null rows

Expression Evaluation Rules
The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or function
are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then other
subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();

then somefunc() would (probably) not be called at all. The same would be the case if one wrote:

SELECT somefunc() OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found in
some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since those
clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions (AND/OR
/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws of Boolean
algebra.

When it is essential to force evaluation order, a CASE construct can be used. For example, this is an
untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;

But this is safe:

SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writing y > 1.5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that it
does not prevent early evaluation of constant subexpressions. As described in Section 38.7, functions and
operators marked IMMUTABLE can be evaluated when the query is planned rather than when it is executed.
Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant subexpression,
even if every row in the table has x > 0 so that the ELSE arm would never be entered at run time.

136

https://www.postgresql.org/docs/current/xfunc-volatility.html

While that particular example might seem silly, related cases that don’t obviously involve constants can
occur in queries executed within functions, since the values of function arguments and local variables can be
inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example, using an
IF-THEN-ELSE statement to protect a risky computation is much safer than just nesting it in a CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT list or
HAVING clause are considered. For example, the following query can cause a division-by-zero error despite
seemingly having protected against it:

SELECT CASE WHEN min(employees) > 0
 THEN avg(expenses / employees)
 END
 FROM departments;

The min() and avg() aggregates are computed concurrently over all the input rows, so if any row has
employees equal to zero, the division-by-zero error will occur before there is any opportunity to test the result
of min(). Instead, use a WHERE or FILTER clause to prevent problematic input rows from reaching an
aggregate function in the first place.

Calling Functions

IvorySQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters, since it
makes the associations between parameters and actual arguments more explicit and reliable. In positional
notation, a function call is written with its argument values in the same order as they are defined in the
function declaration. In named notation, the arguments are matched to the function parameters by name
and can be written in any order.

In either notation, parameters that have default values given in the function declaration need not be written
in the call at all. But this is particularly useful in named notation, since any combination of parameters can
be omitted; while in positional notation parameters can only be omitted from right to left.

IvorySQL also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function definition:

CREATE FUNCTION concat_lower_or_upper(a text, b text, uppercase boolean DEFAULT false)
RETURNS text
AS
$$
 SELECT CASE
 WHEN $3 THEN UPPER($1 || ' ' || $2)
 ELSE LOWER($1 || ' ' || $2)
 END;
$$
LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is one optional
parameter uppercase which defaults to false. The a and b inputs will be concatenated, and forced to either
upper or lower case depending on the uppercase parameter. The remaining details of this function definition
are not important here .

137

Using Positional Notation
Positional notation is the traditional mechanism for passing arguments to functions in IvorySQL. An example
is:

SELECT concat_lower_or_upper('Hello', 'World', true);
 concat_lower_or_upper

 HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as true. Another
example is:

SELECT concat_lower_or_upper('Hello', 'World');
 concat_lower_or_upper

 hello world
(1 row)

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in lower case
output. In positional notation, arguments can be omitted from right to left so long as they have defaults.

Using Named Notation
In named notation, each argument’s name is specified using ⇒ to separate it from the argument
expression. For example:

SELECT concat_lower_or_upper(a => 'Hello', b => 'World');
 concat_lower_or_upper

 hello world
(1 row)

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using named
notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper(a => 'Hello', b => 'World', uppercase => true);
 concat_lower_or_upper

 HELLO WORLD
(1 row)

SELECT concat_lower_or_upper(a => 'Hello', uppercase => true, b => 'World');
 concat_lower_or_upper

138

 HELLO WORLD
(1 row)

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat_lower_or_upper(a := 'Hello', uppercase := true, b := 'World');
 concat_lower_or_upper

 HELLO WORLD
(1 row)

Using Mixed Notation
The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper('Hello', 'World', uppercase => true);
 concat_lower_or_upper

 HELLO WORLD
(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by name. In
this example, that adds little except documentation. With a more complex function having numerous
parameters that have default values, named or mixed notation can save a great deal of writing and reduce
chances for error.

Note
Named and mixed call notations currently cannot be used when calling an aggregate function (but
they do work when an aggregate function is used as a window function).

Oracle Compatible Features

Configuration parameters

Parameters are set in the same way as in native IvorySQL. All parameter names are case-insensitive. Each
parameter takes a value of one of the following five types: boolean, string, integer, floating point, or enum.

compatible_mode (enum)

This parameter controls the behavior of the database server. The default value is postgres, which means it is
a native installation and the server will be installed as a native PG. If it is set to oracle, then the query output
and overall system behavior will change, as it will be more Oracle-like.

When set to oracle, this parameter will implicitly add a Schema with the same name to search_path. so that
Oracle-compatible objects can be located.

This parameter can be set via the postgresql.conf configuration file to take effect for the entire database. Or
it can be set on the session by the client using the set command.

139

Packages

1.This section introduces IvorySQL’s "Oracle-style packages". By definition, a package is an object or group
of objects packaged together. In the case of a database, this translates into a named schema object that
packages within itself a collection of procedures, functions, variables, cursors, user-defined record types,
and logical groupings of referenced records. It is expected that users are familiar with IvorySQL and have a
good understanding of the SQL language in order to better understand these packages and use them more
effectively.

Requirements for packages

As with similar constructs in various other programming languages, there are many benefits to using
packages with SQL. In this section, we are going to talk about a few.

1.Reliability and reusability of code packages

Packages enable you to create modular objects that encapsulate code. This makes the
overall design and implementation much easier. By encapsulating variables and related
types, stored procedures/functions, and cursors, it allows you to create a stand-alone
module that is simple, easy to understand, and easy to maintain and use. Encapsulation
works by exposing the package interface rather than the implementation details of the
package body. As a result, this is beneficial in many ways. It allows applications and
users to reference a consistent interface without having to worry about the content of
its body. In addition, it prevents users from making any decisions based on the code
implementation, which is never exposed to them.

2.Ease of use

The ability to create consistent functional interfaces in IvorySQL helps simplify
application development because it allows packages to be compiled without a body.
After the development phase, packages allow users to manage access control for the
entire package, rather than individual objects. This is very valuable, especially when
the package contains many schema objects.

3.Performance

Packages are loaded into memory for maintenance, and therefore use minimal I/O
resources. Recompilation is simple and limited to changed objects; no recompilation of
slave objects.

4.Additional Features

In addition to performance and ease of use, the package provides session-wide
persistence for variables and cursors. This means that variables and cursors have the
same lifetime as the database session and are destroyed when the session is destroyed.

Package Components

A package has an interface and a body, which are the main components that make up the package.

1.Package specification

140

The package specification specifies any objects within the package that are used from
the outside. This refers to interfaces that are publicly accessible. It does not
contain their definitions or implementations, i.e., functions and procedures. It
defines only the title, not the body definition. Variables can be initialized. The
following is a list of objects that can be listed in the specification.

• Functions
• Procedures
• Cursors
• Types
• Variables
• Constants
• Record types

2.Package Bodies

The package body contains all the implementation code of the package, including public
interfaces and private objects. If the specification does not contain any subroutines
or cursors, the package body is optional.

It must contain the definitions of the subroutines declared in the specification, and
the corresponding definitions must match.

A package body may contain its own subroutines and type declarations for any internal
objects not specified in the specification. These objects are considered private. It
is not possible to access private objects outside the package.

In addition to the subroutine definition, it may optionally contain an initialization
block that initializes the variables declared in the specification and is executed
only once when the package is first invoked in a session.

Note
If the specification changes, the package body will be invalidated. Care must be taken when
identifying public and private interfaces to avoid exposing critical functions and variables outside of
the package.

Package Syntax

Package Specification Syntax

CREATE [OR REPLACE] PACKAGE [schema.] *package_name* [invoker_rights_clause] [IS |
AS]
 item_list[, item_list ...]

141

END [*package_name*];

invoker_rights_clause:
 AUTHID [CURRENT_USER | DEFINER]

item_list:
[
 function_declaration |
 procedure_declaration |
 type_definition |
 cursor_declaration |
 item_declaration
]

function_declaration:
 FUNCTION function_name [(parameter_declaration[, ...])] RETURN datatype;

procedure_declaration:
 PROCEDURE procedure_name [(parameter_declaration[, ...])]

type_definition:
 record_type_definition |
 ref_cursor_type_definition

cursor_declaration:
 CURSOR name [(cur_param_decl[, ...])] RETURN rowtype;

item_declaration:
 cursor_declaration |
 cursor_variable_declaration |
 record_variable_declaration |
 variable_declaration |

record_type_definition:
 TYPE record_type IS RECORD (variable_declaration [, variable_declaration]...) ;

ref_cursor_type_definition:
 TYPE type IS REF CURSOR [RETURN type%ROWTYPE];

cursor_variable_declaration:

142

 curvar curtype;

record_variable_declaration:
 recvar { record_type | rowtype_attribute | record_type%TYPE };

variable_declaration:
 varname datatype [[NOT NULL] := expr]

parameter_declaration:
 parameter_name [IN] datatype [[:= | DEFAULT] expr]

Package Body Syntax

CREATE [OR REPLACE] PACKAGE BODY [schema.] package_name [IS | AS]
 [item_list[, item_list ...]] |
 item_list_2 [, item_list_2 ...]
 [initialize_section]
END [package_name];

initialize_section:
 BEGIN statement[, ...]

item_list:
[
 function_declaration |
 procedure_declaration |
 type_definition |
 cursor_declaration |
 item_declaration
]

item_list_2:
[
 function_declaration
 function_definition
 procedure_declaration
 procedure_definition
 cursor_definition
]

function_definition:

143

 FUNCTION function_name [(parameter_declaration[, ...])] RETURN datatype [IS | AS]
 [declare_section] body;

procedure_definition:
 PROCEDURE procedure_name [(parameter_declaration[, ...])] [IS | AS]
 [declare_section] body;

cursor_definition:
 CURSOR name [(cur_param_decl[, ...])] RETURN rowtype IS select_statement;

body:
 BEGIN statement[, ...] END [name];

statement:
 [<<LABEL>>] pl_statments[, ...];

Description

Create Package defines a new package. Creating or replacing a package will create a new package or replace
an existing definition.

If the architecture name is included, the package is created in the specified architecture. Otherwise, it will be
created in the current architecture. The name of the new package must be unique within the architecture.

When replacing an existing package with "Create or Replace Package", the ownership and permissions of the
package are not changed. All other package properties are specified as specified or implied in the command.
You must own the package in order to replace it (this includes being a member of the role to which it
belongs).

The user who created the package becomes the owner of the package.

parameters

package_name The name of the package to be created (optionally architecture qualified).

invoker_rights_clause Caller permissions define the package’s access to database objects. The available
options are.

• CURRENT_USER The access rights of the current user executing the package will be used.
• DEFINER will use the access rights of the package creator.

item_list This is the list of items that can be part of the package.

procedure_declaration Specifies the procedure name and its argument list. This is just a declaration and
does not define the procedure.

When this declaration is part of the package specification, it is a public procedure and its definition must be
added to the package body.

When it is part of the package body, it acts as a forwarding declaration and is a private procedure accessible
only to package elements.

The procedure_definition procedure is defined in the package body. This defines the previously declared
procedure. It is also possible to define a procedure without any previous declarations, which would make it

144

a private procedure.

` function_declaration` defines the function name, its arguments and its return type. It is just a declaration
and will not define a function.

When this declaration is part of the package specification, it is a public function and its definition must be
added to the package body.

When it is part of the package body, it acts as a forwarding declaration and is a private function accessible
only to package elements.

function_definition These functions are defined in the package body. This defines the function declared
earlier. It can also define a function without any previous declarations, which would make it a private
function.

type_definition suggests that you can define record or cursor types.

cursor_declaration defines that a cursor declaration must include its arguments and return type as the
required line type.

item_declaration allows declarations:

• Cursors
• Cursor variables
• Record variables
• Variables

parameter_declaration defines the syntax for declaring parameters. If the keyword "IN" is specified, it means
that this is an input parameter. The default keyword followed by an expression (or value) can only be specific
to the input parameter.

declare_section It contains all elements local to the function or procedure and can be referenced in its
body.

body The body consists of the SQL statements or PL control structures supported by the PL/iSQL language.

Creating and Accessing Packages

Creating Packages

In this section, we will learn more about the package construction process and how to access its public
elements.

When a package is created, IvorySQL will compile it and report any issues it may find. Once the package is
successfully compiled, it will be removed ready for use.

Accessing Package Elements

When a package is first referenced in a session, it will be instantiated and initialized. The following actions
perform this process in the procedure.

• Assigning initial values to public constants and variables
• Execute the initial value setting item block for the package

There are several ways to access package elements.

• Package functions can be used like any other function in a SELECT statement or other PL block
• Package procedures can be called directly using CALL or from other PL blocks
• Package variables can be read and written directly using the package name qualification in the PL block

145

or from the SQL prompt.
• Direct access using dot notation: In the dot representation, elements can be accessed by
• package_name.func('foo');
• package_name.proc('foo');
• package_name.variable;
• package_name.constant;
• package_name.other_package.func('foo');

These statements can be used from inside a PL block, or in a SELECT statement if
the elements are not type declarations or procedures.

• SQL call statements: Another way is to use the CALL statement. the CALL statement executes a
standalone procedure, or a function defined in a type or package.

• CALL package_name.func('foo');
• CALL package_name.proc('foo');

Understanding the Scope of Visibility

The scope of a variable declared in a PL/SQL block is limited to that block. If it has nested blocks, it will be a
global variable of the nested block.

Similarly, if both blocks declare variables with the same name, then within the nested block, its own
declared variable is visible and the parent variable is invisible. To access the parent variable, the variable
must be fully qualified.

Consider the following code snippet.

Example: Visibility and Qualified Variable Names

<<blk_1>>
DECLARE
 x INT;
 y INT;
BEGIN
 -- both blk_1.x and blk_1.y are visible
 <<blk_2>>
 DECLARE
 x INT;
 z INT;
 BEGIN
 -- blk_2.x, y and z are visible
 -- to access blk_1.x it has to be a qualified name. blk_1.x := 0; NULL;
 END;
 -- both x and y are visible
END;

The above example shows how variable names must be fully qualified when nested packages contain
variables with the same name.

146

Variable name qualification helps to resolve possible confusion introduced by scope precedence in the
following cases.

• Package and nested package variables: if unqualified, nested takes precedence
• Package variables and column names: if unqualified, column names take precedence
• Function or program variables and package variables: if unqualified, package variables take precedence.

Type qualification is required for fields or methods in the following types

• Record type

Example: Record type visibility and access

DECLARE
 x INT;
 TYPE xRec IS RECORD (x char, y INT);
BEGIN
 x := 1; -- will always refer to x(INT) type.
 xRec.x := '2'; -- to refer the CHAR type, it will have to be
qualified name
END;

Package Example

Package Specifications

CREATE TABLE test(x INT, y VARCHAR2(100));
INSERT INTO test VALUES (1, 'One');
INSERT INTO test VALUES (2, 'Two');
INSERT INTO test VALUES (3, 'Three');

-- Package specification:
CREATE OR REPLACE PACKAGE example AUTHID DEFINER AS
 -- Declare public type, cursor, and exception:
 TYPE rectype IS RECORD (a INT, b VARCHAR2(100));
 CURSOR curtype RETURN rectype%rowtype;

 rec rectype;

 -- Declare public subprograms:
 FUNCTION somefunc (
 last_name VARCHAR2,
 first_name VARCHAR2,
 email VARCHAR2
) RETURN NUMBER;

147

 -- Overload preceding public subprogram:
 PROCEDURE xfunc (emp_id NUMBER);
 PROCEDURE xfunc (emp_email VARCHAR2);
END example;
/

Package body

-- Package body:
CREATE OR REPLACE PACKAGE BODY example AS
 nelems NUMBER; -- private variable, visible only in this package

 -- Define cursor declared in package specification:
 CURSOR curtype RETURN rectype%rowtype IS SELECT x, y
 FROM test
 ORDER BY x;
 -- Define subprograms declared in package specification:
 FUNCTION somefunc (
 last_name VARCHAR2,
 first_name VARCHAR2,
 email VARCHAR2
) RETURN NUMBER IS
 id NUMBER := 0;
 BEGIN
 OPEN curtype;
 LOOP
 FETCH curtype INTO rec;
 EXIT WHEN NOT FOUND;
 END LOOP;
 RETURN rec.a;
 END;

 PROCEDURE xfunc (emp_id NUMBER) IS
 BEGIN
 NULL;
 END;

 PROCEDURE xfunc (emp_email VARCHAR2) IS
 BEGIN
 NULL;
 END;

148

BEGIN -- initialization part of package body
 nelems := 0;
END example;
/
SELECT example.somefunc('Joe', 'M.', 'email@example.com');

Limitations
Record types are supported as package variables, but they can only be used within package elements, i.e.
package functions/procedures can use them. They cannot be accessed outside the package, a restriction
that will be addressed in the next update of IvorySQL.

Changing tables

syntax

ALTER TABLE [IF EXISTS] [ONLY] name [*]
action;

action:
 ADD (add_coldef [, ...])
 | MODIFY (modify_coldef [, ...])
 | DROP [COLUMN] (column_name [, ...])

add_coldef:
 cloumn_name data_type

modify_coldef:
 cloumn_name data_type alter_using

alter_using:
 USING expression

parameters
name Table name. cloumn_name Column name. data_type Column type. expression The value expression.
ADD keyword Adds a column to the table, either one or more columns. MODIFY keyword Modify a column of
the table, you can modify one or more columns. DROP keyword Deletes a column of a table, you can delete
one or more columns. USING keyword Modifies the value of a column.

Example

ADD:
create table tb_test1(id int, flg char(10));

alter table tb_test1 add (name varchar);

149

alter table tb_test1 add (adress varchar, num int, flg1 char);

\d tb_test1
 Table "public.tb_test1"
 Column | Type | Collation | Nullable | Default
--------+-------------------+-----------+----------+---------
 id | integer | | |
 flg | character(10) | | |
 name | character varying | | |
 adress | character varying | | |
 num | integer | | |
 flg1 | character(1) | | |

MODIFY:
create table tb_test2(id int, flg char(10), num varchar);

insert into tb_test2 values('1', 2, '3');

alter table tb_test2 modify(id char);

\d tb_test2
 Table "public.tb_test2"
 Column | Type | Collation | Nullable | Default
--------+-------------------+-----------+----------+---------
 id | character(1) | | |
 flg | character(10) | | |
 num | character varying | | |

DROP:
create table tb_test3(id int, flg1 char(10), flg2 char(11), flg3 char(12), flg4
char(13),
 flg5 char(14), flg6 char(15));

alter table tb_test3 drop column(id);

\d tb_test3
 Table "public.tb_test3"
 Column | Type | Collation | Nullable | Default
--------+---------------+-----------+----------+---------
 flg1 | character(10) | | |
 flg2 | character(11) | | |
 flg3 | character(12) | | |

150

 flg4 | character(13) | | |
 flg5 | character(14) | | |
 flg6 | character(15) | | |

Delete table

Syntax

[WITH [RECURSIVE] with_query [, ...]]
DELETE [FROM] [ONLY] table_name [*] [[AS] alias]
 [USING using_list]
 [WHERE condition | WHERE CURRENT OF cursor_name]
 [RETURNING * | output_expression [[AS] output_name] [, ...]]

Parameters
table_name The name of the table. alias The table alias. using_list A list of table expressions that allow
columns from other tables to appear in the WHERE condition. condition An expression that returns a
boolean type value. cursor_name The name of the cursor to be used in the WHERE CURRENT OF case.
output_expression An expression that is calculated by DELETE and returned after each row is deleted.
output_name The name of the returned column.

uses

create table tb_test4(id int, flg char(10));

insert into tb_test4 values(1, '2'), (3, '4'), (5, '6');

delete from tb_test4 where id = 1;

delete tb_test4 where id = 3;

table tb_test4;
 id | flg
----+------------
 5 | 6
(1 row)

Update table

Syntax

[WITH [RECURSIVE] with_query [, ...]]
UPDATE [ONLY] table_name [*] [[AS] alias]
 SET { [table_name | alias] column_name = { expression | DEFAULT }

151

| ([table_name | alias] column_name [, ...]) = [ROW] ({ expression | DEFAULT
} [, ...])
| ([table_name | alias] column_name [, ...]) = (sub-SELECT)
 } [, ...]
 [FROM from_list]
 [WHERE condition | WHERE CURRENT OF cursor_name]
 [RETURNING * | output_expression [[AS] output_name] [, ...]]

parameters
table_name Table name. alias Table alias. column_name Column name. expression Value expression. sub-
SELECT select clause. from_list Table expression. condition An expression that returns a value of type
boolean. cursor_name The name of the cursor to be used in the WHERE CURRENT OF case.
output_expression An expression that is computed by DELETE and returned after each row is deleted.
output_name The name of the column being returned.

Example

create table tb_test5(id int, flg char(10));

insert into tb_test5 values(1, '2'), (3, '4'), (5, '6');

update tb_test5 a set a.id = 33 where a.id = 3;

table tb_test5;
Id | flg
----+------------
 1 | 2
 5 | 6
 33 | 4
(3 rows)

GROUP BY

Example

set compatible_mode to oracle;

create table students(student_id varchar(20) primary key ,
student_name varchar(40),
student_pid int);

select student_id,student_name from students group by student_id;
ERROR: column "students.student_name" must appear in the GROUP BY clause or be used
in an aggregate function

152

UNION

Example

select null union select null union select 1.2;
 ?column?

 1.2

(2 rows)

Minus Operator

Syntax

select_statement MINUS [ALL | DISTINCT] select_statement;

Parameters
select_statement Any SELECT statement without the ORDER BY, LIMIT, FOR NO KEY UPDATE, FOR UPDATE,
FOR SHARE, and FOR KEY SHARE clauses. ALL keyword contains duplicate row results. DISTINCT keyword
shows the elimination of duplicate rows.

Example

select * from generate_series(1, 3) g(i) MINUS select * from generate_series(1, 3)
g(i) where i = 1;
 i

 2
 3
(2 rows)

Escape characters

Overview
Use q\' to escape special characters. q\' escaped characters are usually used after ! [] {} () \<> and other
escaping characters, you can also use \, letters, numbers, \=, +, -, *, \&, \$, \%, #, etc., no spaces are allowed.

Example of

select q''' is goog '';
 ?column?

 ' is goog

153

(1 row)

Sequence

Syntax

SELECT [database {schema} | schema] sequence {nextval | currval};

Parameters
`sequence`Sequence Name.

Example

create sequence sq;

select sq.nextval;
 nextval

 1
(1 row)

select sq.currval;
 nextval

 1
(1 row)

Compatible with time and date functions

from_tz

Purpose

Convert the given timestamp without time zone to the specified timestamp with time
zone, or return NULL if the specified time zone or timestamp is NULL.

Parameters

Parameters Description
day Timestamp without time zone
tz Specified time zone

Example

154

select from_tz('2021-11-08 09:12:39','Asia/Shanghai') from dual;
 from_tz

 2021-11-08 09:12:39 Asia/Shanghai
(1 row)

select from_tz('2021-11-08 09:12:39','SAST') from dual;
 from_tz

 2021-11-08 09:12:39 SAST

select from_tz(NULL,'SAST') from dual;
 from_tz

(1 row)

select from_tz('2021-11-08 09:12:31',NULL) from dual;
 from_tz

(1 row)

systimestamp

Purpose

Get the timestamp of the current database system.

Example

select oracle.systimestamp();
 systimestamp

 2021-12-02 14:38:59.879642+08
(1 row)

select systimestamp;
 statement_timestamp

 2021-12-02 14:39:33.262828+08

155

sys_extract_utc

Purpose

Converts the given timestamp with time zone to UTC time without time zone.

Parameters Description

Parameters Description
day Need to convert time stamp with time zone

Example

select sys_extract_utc('2018-03-28 11:30:00.00 +09:00'::timestamptz) from dual;
 sys_extract_utc

 2018-03-28 02:30:00
(1 row)

select oracle.sys_extract_utc(NULL) from dual;
 sys_extract_utc

(1 row)

sessiontimezone

Purpose

Gets the time zone of the current session.

Example

select sessiontimezone() from dual;
 sessiontimezone

 PRC
(1 row)

set timezone to UTC;

 select oracle.sessiontimezone();
 sessiontimezone

156

 UTC
(1 row)

next_day

Purpose

next_day returns the date of the first weekday with the same format name, which is
later than the current date. The return type is always DATE, regardless of the date's
data type. The return value has the same hour, minute, and second parts as the
Parameters date.

ParametersDescription

Parameters Description
value Start Timestamp
weekday The day of the week, can be "Sunday", "Monday",

"Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday" or 0,1,2,3,4,5,6,0 for Sunday

Example

select next_day(to_timestamp('2020-02-29 14:40:50', 'YYYY-MM-DD HH24:MI:SS'),
'Tuesday') from dual;
 next_day

 2020-03-03 14:40:50
(1 row)

select next_day('2020-07-01 19:43:51 +8'::timestamptz, 1) from dual;
 next_day

 2020-07-05 19:43:51
(1 row)

select next_day(oracle.date '2020-09-15 12:13:29', 6) from dual;
 next_day

 2020-09-18 12:13:29
(1 row)

last_day

Purpose

157

last_day returns the last day of the month in which the slot date falls.

ParametersDescription

Parameters Description
value Specified timestamp

Example

select last_day(timestamp '2020-05-17 13:27:19') from dual;
 last_day

 2020-05-31 13:27:19
(1 row)

select last_day('2020-11-29 19:20:40 +08'::timestamptz) from dual;
 last_day

 2020-11-30 19:20:40
(1 row)

select last_day('-0004-2-1 13:27:19'::oracle.date) from dual;
 last_day

 -0004-02-29 13:27:19
(1 row)

add_months

Purpose

add_months returns the date plus an integer month. date Parameters can be date-time
values or any value that can be implicitly converted to DATE. integer Parameters can
be an integer or any value that can be implicitly converted to an integer.

ParametersDescription

Parameters Description
day oracle.date type, the timestamp that needs to be

changed
value A shaping data, the number of months to be added

Example

158

select add_months(date '2020-02-15',7) from dual;
 add_months

 2020-09-15 00:00:00
(1 row)

select add_months(timestamp '2018-12-15 19:12:09',12) from dual;
 add_months

 2019-12-15 19:12:09
(1 row)

sysdate

Purpose

sysdate returns the operating system time of the database server.

Example

select sysdate;
 statement_sysdate

 2021-12-09 16:20:34
(1 row)

select sysdate();
 sysdate

 2021-12-09 16:21:39
(1 row)

new_time

Purpose

Convert the time of the first time zone to the time of the second time zone. The time
zones include "ast", "adt", "bst", "bdt", "cst", "cdt", "est", "edt", "gmt", "hst",
"hdt", "mst", "mdt", "nst", "pst", "pdt", "yst", "ydt".

ParametersDescription

Parameters Description

159

day Timestamp to be converted
tz1 Timestamped time zones
tz2 Target time zone

Example

select new_time(timestamp '2020-12-12 17:45:18', 'AST', 'ADT') from dual;
 new_time

 2020-12-12 18:45:18
(1 row)

select new_time(timestamp '2020-12-12 17:45:18', 'BST', 'BDT') from dual;
 new_time

 2020-12-12 18:45:18
(1 row)

select new_time(timestamp '2020-12-12 17:45:18', 'CST', 'CDT') from dual;
 new_time

 2020-12-12 18:45:18
(1 row)

trunc

Purpose

The trunc function returns a date, truncated in the specified format. fmt includes
"Y", "YY", "YYYY", "YYYY", "YEAR", "SYYYY", "SYEAR", "I", "IY", "IYY", "IYYY", "Q",
"WW", "Iw", "W", "DAY", "DY", "D", " MONTH", "MONn", "MM", "RM", "CC", "SCC", "DDD",
"DD", "J", "HH", "HH12", "HH24", "MI".

ParametersDescription

Parameters Description
value The specified date (oracle.date, timestamp,

timestamptz)
fmt The specified format, if omitted, defaults to "DDD"

Example

select trunc(timestamp '2020-07-28 19:16:12', 'Q');
 trunc

160

 2020-07-01 00:00:00
(1 row)

select trunc(timestamptz '2020-09-27 18:30:21 + 08', 'MONTH');
 trunc

 2020-09-01 00:00:00+08
(1 row)

round

Purpose

The round function returns a date, rounded to the specified format. fmt includes "Y",
"YY", "YYYY", "YYYY", "YEAR", "SYYYY", "SYEAR", "I", "IY", "IYY", "IYYY", "Q", "WW",
"Iw", "W", "DAY", "DY", "D ", "MONTH", "MONn", "MM", "RM", "CC", "SCC", "DDD", "DD",
"J", "HH", "HH12", "HH24", "MI".

ParametersDescription

Parameters Description
value The date being converted (oracle.date, timestamp,

timestamptz)
fmt The specified format, if omitted, defaults to "DDD"

Example

select round(timestamp '2050-06-12 16:40:55', 'IYYY');
 round

 2050-01-03 00:00:00
(1 row)

Compatible conversion and comparison and NULL-related functions

TO_CHAR

Purpose

TO_CHAR (str,[fmt]) Converts the input Parameters to a TEXT data type value according to the given format.
If fmt is omitted, the data will be converted to a TEXT value in the system default format. If str is null, the
function returns null.

Parameters

str Input Parameters (any type). fmt Input format Parameters, see format fmt for details.

161

Example

select to_char('3 2:20:05');
 to_char

 3 days 02:20:05
 (1 row)

select to_char('4.00'::numeric);
 to_char

 4
 (1 row)

select to_char(NULL);
 to_char

 (1 row)

select to_char(123,'xx');
 to_char

 7b
 (1 row)

TO_NUMBER

Purpose

TO_NUMBER(str,[fmt1]) Converts the input Parameters str to a value of the NUMREIC data type according to
the given format. If fmt1 is omitted, the data will be converted to a NUMERIC value in the system default
format. If str is NUMERIC, the function returns str. If str calculates to null, the function returns null. If it cannot
be converted to the NUMERIC data type, the function returns an error.

Parameters

str input Parameters include the following data types (double precision, numeric, text, integer, etc., but
must be implicitly converted to numeric). fmt1 Input format Parameters, see format fmt1 for details.

Example

select to_number(1210.73::numeric, 9999.99::numeric);
 to_number

 1210.73
(1 row)

162

select to_number(NULL);
 to_number

(1 row)

select to_number('123'::text);
 to_number

 123
(1 row)

TO_DATE

Purpose

TO_DATE(str,[fmt]) Converts the input Parameters str to a date data type value according to the given
format. If fmt is omitted, the data will be converted to a date value in the system default format. If str is null,
the function returns null. If fmt is J, for Julian, then char must be an integer. The function returns an error if it
cannot be converted to DATE.

Parameters

str input Parameters (integer, text, can be implicitly converted to the above type, string that matches the
date format). fmt input format Parameters, see format fmt for details.

Example

select to_date('50-11-28 ','RR-MM-dd ');
 to_date

 1950-11-28 00:00:00
(1 row)

select to_date(2454336, 'J');
 to_date

 2007-08-23 00:00:00
(1 row)

select to_date('2019/11/22', 'yyyy-mm-dd');
 to_date

 2019-11-22 00:00:00
(1 row)

163

select to_date('20-11-28 10:14:22','YY-MM-dd hh24:mi:ss');
 to_date

 2020-11-28 10:14:22
(1 row)

select to_date('2019/11/22');
 to_date

 2019-11-22 00:00:00
(1 row)

select to_date('2019/11/27 10:14:22');
 to_date

 2019-11-27 10:14:22
(1 row)

select to_date('2020','RR');
 to_date

 2020-01-01 00:00:00
(1 row)

select to_date(NULL);
 to_date

(1 row)

select to_date('-4712-07-23 14:31:23', 'syyyy-mm-dd hh24:mi:ss');
 to_date

 -4712-07-23 14:31:23
(1 row)

TO_TIMESTAMP

Purpose

TO_TIMESTAMP(str,[fmt]) Converts the input Parameters str to a timestamp without a time zone according
to the given format. If fmt is omitted, the data is converted to a timestamp with no time zone value in the
system default format. If str is null, the function returns null. If it cannot be converted to a timestamp without
a time zone, the function returns an error.

164

Parameters

str input Parameters (double precision,text, which can be implicitly converted to the above type). fmt Input
format Parameters, see format fmt for details.

Example

select to_timestamp(1212121212.55::numeric);
 to_timestamp

 2008-05-30 12:20:12.55
(1 row)

select to_timestamp('2020/03/03 10:13:18 +5:00', 'YYYY/MM/DD HH:MI:SS TZH:TZM');
 to_timestamp

 2020-03-03 13:13:18
(1 row)

select to_timestamp(NULL,NULL);
 to_timestamp

(1 row)

TO_YMINTERVAL

Purpose

TO_YMINTERVAL(str) Converts the input Parameters str time interval to a time interval in the year-to-month
range. Only the year and month are processed, other parts are omitted. If the input Parameters is NULL, the
function returns NULL, and if the input Parameters is in the wrong format, the function returns an error.

Parameters

str Input Parameters (text, can be implicitly converted to text type, must be in time interval format. (SQL
interval format compatible with SQL standard, ISO duration format compatible with ISO 8601:2004
standard).

Example

select to_yminterval('P1Y-2M2D');
 to_yminterval

 10 mons
(1 row)

select to_yminterval('P1Y2M2D');

165

 to_yminterval

 1 year 2 mons
(1 row)

select to_yminterval('-P1Y2M2D');
 to_yminterval

 -1 years -2 mons
(1 row)

select to_yminterval('-P1Y2M2D');
 to_yminterval

 -1 years -2 mons
(1 row)

select to_yminterval('-01-02');
 to_yminterval

 -1 years -2 mons
(1 row)

TO_DSINTERVAL

Purpose

TO_DSINTERVAL(str) converts the time interval of the input Parameters str to a time interval in the range of
days to seconds. Input Parameters include: day, hour, minute, second and microsecond. If the input
Parameters is NULL, the function returns NULL, and if the input Parameters contains the year and month or
is in the wrong format, the function returns an error.

Parameters

str Input Parameters (text, can be implicitly converted to text type, must be in time interval format. (SQL
interval format compatible with SQL standard, ISO duration format compatible with ISO 8601:2004
standard).

Example

select to_dsinterval('100 00 :02 :00');
 to_dsinterval

 100 days 00:02:00
(1 row)

select to_dsinterval('-100 00:02:00');

166

 to_dsinterval

 -100 days -00:02:00
(1 row)

select to_dsinterval(NULL);
 to_dsinterval

(1 row)

select to_dsinterval('-P100D');
 to_dsinterval

 -100 days
(1 row)

select to_dsinterval('-P100DT20H');
 to_dsinterval

 -100 days -20:00:00
(1 row)

select to_dsinterval('-P100DT20S');
 to_dsinterval

 -100 days -00:00:20
(1 row)

TO_TIMESTAMP_TZ

Purpose

TO_TIMESTAMP_TZ(str,[fmt]) Converts the input Parameters str to a timestamp with a time zone according
to the given format. If fmt is omitted, the data will be converted to a timestamp with a time zone value in the
system default format. If str is null, the function returns null. If it cannot be converted to a timestamp with a
time zone, the function returns an error.

Parameters

str input Parameters (text, which can be implicitly converted to a text type). fmt Enter format Parameters,
see format fmt for details.

Example

select to_timestamp_tz('2019','yyyy');
 to_timestamp_tz

167

 2019-01-01 00:00:00+08
(1 row)

select to_timestamp_tz('2019-11','yyyy-mm');
 to_timestamp_tz

 2019-11-01 00:00:00+08
(1 row)

select to_timestamp_tz('2003/12/13 10:13:18 +7:00');
 to_timestamp_tz

 2003-12-13 11:13:18+08
(1 row)

select to_timestamp_tz('2019/12/13 10:13:18 +5:00', 'YYYY/MM/DD HH:MI:SS TZH:TZM');
 to_timestamp_tz

 2019-12-13 13:13:18+08
(1 row)

select to_timestamp_tz(NULL);
 to_timestamp_tz

(1 row)

GREATEST

Purpose

GREATEST(expr1,expr2,…) Gets the maximum value in the input list of one or more expressions. If the result
of any expr calculation is NULL, the function returns NULL.

Parameters

expr1` Enter Parameters (of any type).
`expr2` Enter Parameters (of any type).
`...

Example

select greatest('a','b','A','B');

168

 greatest

 b
(1 row)

select greatest(',','.','/',';','!','@','?');
 greatest

 @
(1 row)

select greatest('瀚','高','数','据','库');
 greatest

 高
(1 row)

SELECT greatest('HARRY', 'HARRIOT', 'HARRA');
 greatest

 HARRY
(1 row)

SELECT greatest('HARRY', 'HARRIOT', NULL);
 greatest

(1 row)

SELECT greatest(1.1, 2.22, 3.33);
 greatest

 3.33
(1 row)

SELECT greatest('A', 6, 7, 5000, 'E', 'F','G') A;
 a

 G
(1 row)

169

LEAST

Purpose

LEAST(expr1,expr2,…) Gets the smallest value in the input list of one or more expressions. If the result of any
expr calculation is NULL, the function returns NULL.

Parameters

expr1` Enter Parameters (of any type).
`expr2` Enter Parameters (of any type).
`...

Example

SELECT least(1,' 2', '3');
 least

 1
(1 row)

SELECT least(NULL, NULL, NULL);
 least

(1 row)

SELECT least('A', 6, 7, 5000, 'E', 'F','G') A;
 a

 5000
(1 row)

select least(1,3,5,10);
 least

 1
(1 row)

select least('a','A','b','B');
 least

 A
(1 row)

170

select least(',','.','/',';','!','@');
 least

 !
(1 row)

select least('瀚','高','据','库');
 least

 库
(1 row)

SELECT least('HARRY', 'HARRIOT', NULL);
 least

(1 row)

NLS_LENGTH_SEMANTICSParameters

Overview
NLS_LENGTH_SEMANTICS enables you to create CHAR and VARCHAR2 columns using byte or character
length semantics. Existing columns are not affected. In this case, the default semantics is BYTE.

Syntax

SET NLS_LENGTH_SEMANTICS TO [NONE | BYTE | CHAR];

Note on the range of values

BYTE: The data is stored in byte length.
CHAR:Data is stored in character length.
NONE:Data is stored using native IvorySQL storage.

Example

--Test “CHAR”

create table test(a varchar2(5));
CREATE TABLE

SET NLS_LENGTH_SEMANTICS TO CHAR;

171

SET

SHOW NLS_LENGTH_SEMANTICS;
 nls_length_semantics

 char
(1 row)

insert into test values ('Hello,Mr.li');
INSERT 0 1

--Test “BYTE”

SET NLS_LENGTH_SEMANTICS TO BYTE;
SET

SHOW NLS_LENGTH_SEMANTICS;
 nls_length_semantics

 byte
(1 row)

insert into test values ('Hello,Mr.li');
2021-12-14 15:28:11.906 HKT [6774] ERROR: value too long for type varchar2(5 byte)
2021-12-14 15:28:11.906 HKT [6774] STATEMENT: insert into test values
('Hello,Mr.li');
ERROR: value too long for type varchar2(5 byte)

VARCHAR2(size)

Overview
Variable length strings with maximum length bytes or characters. You must specify the size for VARCHAR2.
The minimum size is 1 byte or 1 character.

Syntax

VARCHAR2(size)

Example

create table test(a varchar2(5));
CREATE TABLE

172

SET NLS_LENGTH_SEMANTICS TO CHAR;
SET

SHOW NLS_LENGTH_SEMANTICS;
 nls_length_semantics

 char
(1 row)

insert into test values ('Hello,Mr.li');
INSERT 0 1

PL/iSQL

PL/iSQL is IvorySQL’s procedural language for writing custom functions, procedures and packages for
IvorySQL. PL/iSQL is derived from IvorySQL’s PL/pgsql with some added features, but syntactically PL/iSQL
is closer to Oracle’s PL/SQL. This document Describes the basic structure and construction of PL/iSQL
programs.

Structure of PL/iSQL Programs

iSQL is a procedural block structure language that supports four different program types, PACKAGES,
PROCEDURES, FUNCTIONS, and TRIGGERS. iSQL supports four different program types, PACKAGES,
PROCEDURES, FUNCTIONS, and TRIGGERS. iSQL uses the same block structure for each type of supported
program. A block consists of up to three parts: a declaration part, an executable, and an exception part. The
declaration and exception sections are optional.

[DECLARE
 declarations]
 BEGIN
 statements
 [EXCEPTION
 WHEN <exception_condition> THEN
 statements]
 END;

A block can consist of at least one executable section Contains one or more iSQL statements in the BEGIN
and END keywords.

CREATE OR REPLACE FUNCTION null_func() RETURN VOID AS
BEGIN
 NULL;
END;
/

All keywords are case-insensitive. Identifiers are implicitly converted to lowercase unless double-quoted, just
as they are in normal SQL commands. The declaration section can be used to declare variables and cursors,
and depending on the context in which the block is used, the declaration section can begin with the

173

keyword DECLARE.

CREATE OR REPLACE FUNCTION null_func() RETURN VOID AS
DECLARE
 quantity integer := 30;
 c_row pg_class%ROWTYPE;
 r_cursor refcursor;
 CURSOR c1 RETURN pg_proc%ROWTYPE;
BEGIN
 NULL;
end;
/

An optional exception section can also be included in a BEGIN - END block. The exception section begins
with the keyword EXCEPTION and continues until the end of the block in which it appears. If a statement
within the block throws an exception, program control goes to the exception section, which may or may not
handle the thrown exception, depending on the contents of the exception and exception sections.

CREATE OR REPLACE FUNCTION reraise_test() RETURN void AS
BEGIN

 BEGIN
 RAISE syntax_error;
 EXCEPTION
 WHEN syntax_error THEN

 BEGIN
 raise notice 'exception % thrown in inner block, reraising', sqlerrm;
 RAISE;
 EXCEPTION
 WHEN OTHERS THEN
 raise notice 'RIGHT - exception % caught in inner block', sqlerrm;
 END;
 END;
 EXCEPTION
 WHEN OTHERS THEN
 raise notice 'WRONG - exception % caught in outer block', sqlerrm;
END;
/

Note
Like PL/pgSQL, PL/iSQL uses BEGIN/END to group statements, and do not confuse them with the SQL
commands of the same name used for transaction control. PL/iSQL’s BEGIN/END are used only for

174

grouping; they do not start or end transactions

psql support for PL/iSQL programs

To create a PL/iSQL program from a psql client, you can use a syntax similar to PL/pgSQL’s $$

CREATE FUNCTION func() RETURNS void as
$$
..
end$$ language plisql;

Alternatively, you can use the Oracle-compliant syntax of references and language specifications without $$
and end the program definition with / (forward slash). The */ (forward slash) must be on the newline
character

CREATE FUNCTION func() RETURN void AS
…
END;
/

PL/iSQL Program Syntax

PROCEDURES

CREATE [OR REPLACE] PROCEDURE procedure_name [(parameter_list)]
is
[DECLARE]
 -- variable declaration
BEGIN
 -- stored procedure body
END;
/

FUNCTIONS

CREATE [OR REPLACE] FUNCTION function_name ([parameter_list])
RETURN return_type AS
[DECLARE]
 -- variable declaration
BEGIN
 -- function body
 return statement
END;
/

175

PACKAGES

PACKAGE HEADER

CREATE [OR REPLACE] PACKAGE [schema.] *package_name* [invoker_rights_clause] [IS |
AS]
 item_list[, item_list ...]
END [*package_name*];

invoker_rights_clause:
 AUTHID [CURRENT_USER | DEFINER]

item_list:
[
 function_declaration |
 procedure_declaration |
 type_definition |
 cursor_declaration |
 item_declaration
]

function_declaration:
 FUNCTION function_name [(parameter_declaration[, ...])] RETURN datatype;

procedure_declaration:
 PROCEDURE procedure_name [(parameter_declaration[, ...])]

type_definition:
 record_type_definition |
 ref_cursor_type_definition

cursor_declaration:
 CURSOR name [(cur_param_decl[, ...])] RETURN rowtype;

item_declaration:
 cursor_declaration |
 cursor_variable_declaration |
 record_variable_declaration |
 variable_declaration |

record_type_definition:

176

 TYPE record_type IS RECORD (variable_declaration [, variable_declaration]...) ;

ref_cursor_type_definition:
 TYPE type IS REF CURSOR [RETURN type%ROWTYPE];

cursor_variable_declaration:
 curvar curtype;

record_variable_declaration:
 recvar { record_type | rowtype_attribute | record_type%TYPE };

variable_declaration:
 varname datatype [[NOT NULL] := expr]

parameter_declaration:
 parameter_name [IN] datatype [[:= | DEFAULT] expr]

PACKAGE BODY

CREATE [OR REPLACE] PACKAGE BODY [schema.] package_name [IS | AS]
 [item_list[, item_list ...]] |
 item_list_2 [, item_list_2 ...]
 [initialize_section]
END [package_name];

initialize_section:
 BEGIN statement[, ...]

item_list:
[
 function_declaration |
 procedure_declaration |
 type_definition |
 cursor_declaration |
 item_declaration
]

item_list_2:
[
 function_declaration
 function_definition

177

 procedure_declaration
 procedure_definition
 cursor_definition
]

function_definition:
 FUNCTION function_name [(parameter_declaration[, ...])] RETURN datatype [IS | AS]
 [declare_section] body;

procedure_definition:
 PROCEDURE procedure_name [(parameter_declaration[, ...])] [IS | AS]
 [declare_section] body;

cursor_definition:
 CURSOR name [(cur_param_decl[, ...])] RETURN rowtype IS select_statement;

body:
 BEGIN statement[, ...] END [name];

statement:
 [<<LABEL>>] pl_statments[, ...];

Hierarchy Search

Syntax

 {
 CONNECT BY [NOCYCLE] [PRIOR] condition [AND [PRIOR] condition]... [START WITH
condition]
 | START WITH condition CONNECT BY [NOCYCLE] [PRIOR] condition [AND [PRIOR]
condition]...
 }

• The CONNECT BY query syntax begins with the CONNECT BY keywords, which define hierarchical
interdependencies between parent and child rows. The result must be further qualified by specifying the
PRIOR keyword in the conditional part of the CONNECT BY clause.

The PRIOR PRIOR keyword is a unary operator that relates the previous row to the current row. This keyword
can be used to the left or right of the equality condition.

START WITH This clause specifies the line from which the hierarchy begins.

NOCYCLE No operation statement. Currently only supported by the syntax. This clause indicates that data is
returned even if a loop exists.

178

ADDITIONAL COLUMN
LEVEL Returns the level of the current row in the hierarchy, starting at 1 at the root node and incrementing by
1 at each level thereafter.

CONNECT_BY_ROOT expr Returns the parent column of the current row in the hierarchy.

SYS_CONNECT_BY_PATH(col, chr) It is a function that returns the value of the column from the root to the
current node, separated by the character "chr".

Limitations
This function currently has the following limitations.

• Additional columns can be used for most expressions, such as function calls, CASE statements and
general expressions, but there are some unsupported columns, such as ROW, TYPECAST, COLLATE,
GROUPING clauses, etc.

• In case two or more columns are the same, you may need to output the column name, Example such as

SELECT CONNECT_BY_ROOT col AS "col1", CONNECT_BY_ROOT col AS "col2" ….

• Indirect operators or "*" are not supported
• Loop detection is not supported

Global Unique Index

Create global unique index

Syntax

CREATE UNIQUE INDEX [IF NOT EXISTS] name ON table_name [USING method] (columns) GLOBAL

Example

CREATE UNIQUE INDEX myglobalindex on mytable(bid) GLOBAL;

Global uniqueness assurance
During the creation of a globally unique index, the system performs an index scan on all existing partitions
and raises an error if it finds duplicate entries from other partitions than the current one. Example.

Command

create table gidxpart (a int, b int, c text) partition by range (a);
create table gidxpart1 partition of gidxpart for values from (0) to (100000);
create table gidxpart2 partition of gidxpart for values from (100000) to (199999);
insert into gidxpart (a, b, c) values (42, 572814, 'inserted first on gidxpart1');
insert into gidxpart (a, b, c) values (150000, 572814, 'inserted second on
gidxpart2');
create unique index on gidxpart (b) global;

179

Output

ERROR: could not create unique index "gidxpart1_b_idx"
DETAIL: Key (b)=(572814) is duplicated.

Insertions and updates

Global uniqueness guarantee for insertions and updates
During global unique index creation, the system performs an index scan on all existing partitions and raises
an error if duplicate items are found in other partitions than the current one.

Example
Command

create table gidx_part (a int, b int, c text) partition by range (a);
create table gidxpart (a int, b int, c text) partition by range (a);
create table gidxpart1 partition of gidxpart for values from (0) to (10);
create table gidxpart2 partition of gidxpart for values from (10) to (100);
create unique index gidx_u on gidxpart using btree(b) global;

insert into gidxpart values (1, 1, 'first');
insert into gidxpart values (11, 11, 'eleventh');
insert into gidxpart values (2, 11, 'duplicated (b)=(11) on other partition');

Output

ERROR: duplicate key value violates unique constraint "gidxpart2_b_idx"
DETAIL: Key (b)=(11) already exists.

Append and detach

Global uniqueness guarantee for append statements
When appending a new table to a partitioned table with a globally unique index, the system performs a
duplicate check on all existing partitions. If a duplicate item is found in an existing partition that matches a
tuple in the appended table, an error is raised and the append fails.

Appending requires a sharedlock on all existing partitions. If one of the partitions is doing a concurrent
INSERT, the append will wait for it to complete first. This can be improved in a future release

Example
Command

create table gidxpart (a int, b int, c text) partition by range (a);
create table gidxpart1 partition of gidxpart for values from (0) to (100000);

180

insert into gidxpart (a, b, c) values (42, 572814, 'inserted first on gidxpart1');
create unique index on gidxpart (b) global;
create table gidxpart2 (a int, b int, c text);
insert into gidxpart2 (a, b, c) values (150000, 572814, 'dup inserted on gidxpart2');

alter table gidxpart attach partition gidxpart2 for values from (100000) to (199999);

Output

ERROR: could not create unique index "gidxpart1_b_idx"
DETAIL: Key (b)=(572814) is duplicated.

Operation Management
Since IvorySQL is based on PostgreSQL, it is recommended that when reading and understanding this
section, O&M staff also refer to doc。

Upgrade IvorySQL version

Overview of upgrade scheme

The IvorySQL version number consists of a major version and a minor version. For example, 1 in IvorySQL 1.3
is the major version and 3 is the minor version.

Releasing a minor version is not going to change the in-memory storage format, so it is always compatible
with the same major version. For example, IvorySQL 1.3 is compatible with Ivory SQL 1.0 and the subsequent
Ivory SQL 1.x. Upgrading for these compatible versions is as simple as shutting down the database service,
installing a replacement binary executable, and restarting the service.

Next, we focus on cross-version upgrades of IvorySQL, for example, from IvorySQL 1.3 to IvorySQL 2.1. Major
version upgrades may modify the internal data storage format and therefore require additional operations
to be performed. The common cross-version upgrade methods and applicable scenarios are as follows.

Upgrade method Applicable scenarios Shutdown time
pg_dumpall Small to medium sized databases,

e.g. less than 100GB to support
cross-platform data migration

Depends on the size of the
database

pg_upgrade Large and medium-sized
databases, e.g., >100GB local
upgrade

A few minutes

Logical Replication Large and medium-sized
databases, e.g. >100GB cross-
platform support

A few seconds

Attention： New major releases usually introduce some user-visible incompatibilities and may therefore
require application programming changes. All user-visible changes are listed in description，Please pay
special attention to the section labeled "Migration". Although you may upgrade from one major version to
another without upgrading an intermediate version, you should read the major release notes for all
intermediate versions.

Upgrade data via pg_dumpall

The traditional cross-version upgrade method uses pg_dump/pg_dumpall to logically backup the database

181

https://www.postgresql.org/docs/15/index.html
https://www.postgresql.org/docs/current/release.html

everywhere and then restore it in the new version via pg_restore. It is recommended to use the new version
of pg_dump/pg_dumpall tool when exporting the old version of the database.You can take advantage of its
latest parallel export and restore features, while reducing database bloat problems.

Logical backup and restore is very simple but slow, downtime depends on the size of the database, so it is
suitable for small to medium sized database upgrades.

The following describes how this upgrade method works. If the current IvorySQL software installation
directory is located in /usr/local/pgsql and the data directory is located in /usr/local/pgsql/data, we do the
upgrade on the same server.

1.Stop the application before performing a logical backup and make sure that no data is updated, as
updates after the backup has started will not be exported. If necessary, modify the
/usr/local/pgsql/data/pg_hba.conf file to disable others from accessing the database. Then backup the
database.

pg_dumpall > outputfile

If you have installed a new version of IvorySQL, you can use the new version of the
pg_dumpall command to back up the old version of the database.

2.Stop the backend services of older versions.

pg_ctl stop

Or stop the background service by other means.

3.If the installation directory does not contain a specific version identifier, the directory can be renamed and
modified back if necessary. Directories can be renamed using a command similar to the following.

mv /usr/local/pgsql /usr/local/pgsql.old

4.Install the new version of IvorySQL software, if the installation directory is still /usr/local/pgsql.

5.Initializing a new database cluster requires the use of a database specific user (usually postgres; if
upgrading the version, this user should already exist) to perform the operation.

/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data

6.Change the old configuration file pg_hba.conf, postgresql.conf, etc. in the corresponding new
configuration file.

7.To start a new version of the backend service using a dedicated database user.

/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data

8.Finally, using the new version of the psql command to restore the data.

/usr/local/pqsql/bin/psql -d postgres -f outputfile

182

To reduce downtime, you can install the new version of IvorySQL to another directory, while starting the
service using a different port. Then perform both the export and import of the database.

pg_dumpall -p 5432 | psql -d postgres -p 5433

When the above operation is executed, the old and new versions of the backend service run simultaneously,
with the new version using port 5433 and the old version using port 5432.

Upgrade with the pg_upgrade utility

The pg_upgrade utility supports in-place upgrades of IvorySQL across versions. The upgrade can be
performed in minutes, especially when using the --link mode. It requires similar steps as pg_dumpall above,
such as starting/stopping the server and running initdb.pg_upgrade doc outlines the steps required.

Upgrade data by copying

We can also create a fallback server using logical replication of an updated version of IvorySQL, which
supports replication between different major versions of IvorySQL. The fallback server can be on the same
computer or on a different computer. Once it is synchronized with the primary server (running an older
version of IvorySQL), you can switch hosts and use the backup server as the host, and then shut down the
older database instance. Such a switchover allows an upgrade with only a few seconds of downtime.

This upgrade method can be used with built-in logical replication tools and external logical replication
systems such as pglogical, Slony, Londiste, and Bucardo.

Managing IvorySQL Versions
IvorySQL is based on PostgreSQL and is updated at the same frequency as PostgreSQL, with one major
release per year and one minor release per quarter. IvorySQL 3.2 is based on PostgreSQL 16.2, and all
versions of IvorySQL are backward compatible.The relevant version features can be viewed by looking at
Official Website。

Managing IvorySQL database access
IvorySQL uses the concept of Roles to manage database access rights. A role can be thought of as a
database user or a group of database users, depending on how the role is set. Roles can own database
objects (for example, tables and functions) and can delegate permissions on those objects to other roles to
control who can access which objects. In addition, membership in one role can be granted to another role,
allowing member roles to use the permissions granted to another role.

The concept of roles encompasses the concepts of "user" and "group".

The database roles are conceptually completely separate from the operating system users. It may in fact be
easier to maintain a correspondence, but this is not necessary. Database roles are global within a database
cluster installation (and not within a separate database). To create a role, use the CREATE ROLE SQL
command.

CREATE ROLE name;

Name follows the rules of SQL identifiers: either unadorned with no special characters or surrounded by
double quotes (in fact, you will always have to add additional options to the command, such as LOGIN. see
below for more details). To remove an existing role, use the similar DROP ROLE command.

DROP ROLE name;

For convenience, the createuser and dropuser programs are provided as wrappers for these SQL commands,

183

https://www.postgresql.org/docs/current/pgupgrade.html
https://deploy-preview-83—ivorysql.netlify.app/zh-CN/releases-page

which can be invoked from the shell command line at

createuser name
dropuser name

To determine the set of existing roles, check the pg_roles system directory, e.g.

SELECT rolname FROM pg_roles;

The \du meta command of the psql program can also be used to list existing roles.

To bootstrap a database system, a system that has just been initialized always contains a predefined role.
This role is always a "superuser" and by default (unless changed when running initdb) it is named the same
as the OS user who initialized the database cluster. By convention, this role will be named postgres. In order
to create more roles, you must first connect as the initial role.

Each connection to the database server is established using a particular role name, and this role determines
the initial access rights to the command that initiates the connection. The role name to use for a particular
database connection is indicated by the client, which initiates the connection request in an application-
related style. For example, the psql program uses the -U command line option to specify which role to
connect under. Many applications assume that this name is the current operating system user by default
(including createuser and psql). Therefore it is often convenient to maintain a name correspondence
between the role and the OS user.

The set of database roles that a given client connection can use to connect to is determined by the
authentication settings of that client, so a client is not limited to connecting with a role that matches its OS
user, just as a person’s login name does not need to match her real name. Because role identity
determines the set of permissions available to a connected client, be careful when setting up a multi-user
environment to configure permissions.

A database role can have a number of attributes that define the permissions of the role and interact with the
client authentication system.

It is often convenient to group users together to facilitate the management of permissions: in this way,
permissions can be granted to or reclaimed from an entire group. This is done in IvorySQL by creating a role
that represents a group, and then granting membership in that group role to individual user roles.

Since roles can own database objects and hold privileges to access other objects, deleting a role is often not
a one-time DROP ROLE solution. Any objects owned by that user must first be deleted or transferred to
another owner, and any privileges that have been granted to that role must be withdrawn.

For more details on database access management, refers to doc.

Defining Data Objects
IvorySQL is based on PostgreSQL and has a full SQL with defined data objects that can be referred to doc.On
top of that, IvorySQL has done some Oracle proprietary data object compatibility for Oracle compatibility.

VARCHAR2

Overview

Variable length strings with maximum length bytes or characters. You must specify the size for VARCHAR2.
The minimum size is 1 byte or 1 character.

184

https://www.postgresql.org/docs/15/user-manag.html
https://www.postgresql.org/docs/current/ddl.html

Grammar

VARCHAR2(size)

Use Cases

create table test(a varchar2(5));
CREATE TABLE

SET NLS_LENGTH_SEMANTICS TO CHAR;
SET

SHOW NLS_LENGTH_SEMANTICS;
 nls_length_semantics

 char
(1 row)

insert into test values ('Hello,Mr.li');
INSERT 0 1

Search Data
IvorySQL is developed based on PostgreSQL, with full SQL, query data specific operations can be referred to
doc.

Use of foreign data
IvorySQL implements portions of the SQL/MED specification, allowing you to access data that resides
outside IvorySQL using regular SQL queries. Such data is referred to as foreign data. (Note that this usage is
not to be confused with foreign keys, which are a type of constraint within the database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library that can
communicate with an external data source, hiding the details of connecting to the data source and
obtaining data from it. There are some foreign data wrappers available as contrib modules;see Appendix F.
Other kinds of foreign data wrappers might be found as third party products. If none of the existing foreign
data wrappers suit your needs, you can write your own; see doc.

To access foreign data, you need to create a foreign server object, which defines how to connect to a
particular external data source according to the set of options used by its supporting foreign data wrapper.
Then you need to create one or more foreign tables, which define the structure of the remote data. A foreign
table can be used in queries just like a normal table, but a foreign table has no storage in the IvorySQL
server. Whenever it is used, IvorySQL asks the foreign data wrapper to fetch data from the external source, or
transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current IvorySQL role.

185

https://www.postgresql.org/docs/current/queries.html
https://www.postgresql.org/docs/current/contrib.html
https://www.postgresql.org/docs/current/fdwhandler.html

Backup and Restore
As with everything that contains valuable data, IvorySQL databases should be backed up regularly. While the
procedure is essentially simple, it is important to have a clear understanding of the underlying techniques
and assumptions.

There are three fundamentally different approaches to backing up IvorySQL data:

• SQL dump
• File system level backup
• Continuous archiving

SQL Dump

The idea behind this dump method is to generate a file with SQL commands that, when fed back to the
server, will recreate the database in the same state as it was at the time of the dump. IvorySQL provides the
utility program pg_dumpfor this purpose. The basic usage of this command is:

pg_dump dbname > dumpfile

As you see, pg_dump writes its result to the standard output. We will see below how this can be useful. While
the above command creates a text file, pg_dump can create files in other formats that allow for parallelism
and more fine-grained control of object restoration.

pg_dump is a regular IvorySQL client application (albeit a particularly clever one). This means that you can
perform this backup procedure from any remote host that has access to the database. But remember that
pg_dump does not operate with special permissions. In particular, it must have read access to all tables that
you want to back up, so in order to back up the entire database you almost always have to run it as a
database superuser. (If you do not have sufficient privileges to back up the entire database, you can still back
up portions of the database to which you do have access using options such as -n `schema` or -t `table`.)

To specify which database server pg_dump should contact, use the command line options -h `host` and
-p `port. The default host is the local host or whatever your `HOST environment variable specifies.
Similarly, the default port is indicated by the PORT environment variable or, failing that, by the compiled-in
default. (Conveniently, the server will normally have the same compiled-in default.)

pg_dump will by default connect with the database user name that is equal to the current operating system
user name. To override this, either specify the -U option or set the environment variable PGUSER. Remember
that pg_dump connections are subject to the normal client authentication mechanisms 。

An important advantage of pg_dump over the other backup methods described later is that pg_dump’s
output can generally be re-loaded into newer versions of IvorySQL, whereas file-level backups and
continuous archiving are both extremely server-version-specific. pg_dump is also the only method that will
work when transferring a database to a different machine architecture, such as going from a 32-bit to a 64-bit
server.

Dumps created by pg_dump are internally consistent, meaning, the dump represents a snapshot of the
database at the time pg_dump began running. pg_dump does not block other operations on the database
while it is working. (Exceptions are those operations that need to operate with an exclusive lock, such as
most forms of ALTER TABLE.)

Restoring the Dump

Text files created by pg_dump are intended to be read in by the psql program. The general command form
to restore a dump is

psql dbname < dumpfile

186

where dumpfile is the file output by the pg_dump command. The database dbname will not be created by
this command, so you must create it yourself from template0 before executing psql (e.g., with createdb -T
template0 `dbname`). psql supports options similar to pg_dump for specifying the database server to
connect to and the user name to use. See the psql reference page for more information. Non-text file dumps
are restored using the pg_restore utility.

Before restoring an SQL dump, all the users who own objects or were granted permissions on objects in the
dumped database must already exist. If they do not, the restore will fail to recreate the objects with the
original ownership and/or permissions. (Sometimes this is what you want, but usually it is not.)

By default, the psql script will continue to execute after an SQL error is encountered. You might wish to run
psql with the ON_ERROR_STOP variable set to alter that behavior and have psql exit with an exit status of 3 if an
SQL error occurs:

psql --set ON_ERROR_STOP=on dbname < infile

Either way, you will only have a partially restored database. Alternatively, you can specify that the whole
dump should be restored as a single transaction, so the restore is either fully completed or fully rolled back.
This mode can be specified by passing the -1 or --single-transaction command-line options to psql.
When using this mode, be aware that even a minor error can rollback a restore that has already run for many
hours. However, that might still be preferable to manually cleaning up a complex database after a partially
restored dump.

The ability of pg_dump and psql to write to or read from pipes makes it possible to dump a database
directly from one server to another, for example:

pg_dump -h host1 dbname | psql -h host2 dbname

Important：The dumps produced by pg_dump are relative to template0. This means that any languages,
procedures, etc. added via template1 will also be dumped by pg_dump. As a result, when restoring, if you
are using a customized template1, you must create the empty database from template0, as in the example
above.

After restoring a backup, it is wise to run ANALYZE on each database so the query optimizer has useful
statistics.

Using pg_dumpall

pg_dump dumps only a single database at a time, and it does not dump information about roles or
tablespaces (because those are cluster-wide rather than per-database). To support convenient dumping of
the entire contents of a database cluster, the pg_dumpall program is provided. pg_dumpall backs up each
database in a given cluster, and also preserves cluster-wide data such as role and tablespace definitions.
The basic usage of this command is:

pg_dumpall > dumpfile

The resulting dump can be restored with psql:

psql -f dumpfile ivorysql

(Actually, you can specify any existing database name to start from, but if you are loading into an empty
cluster then ivorysql should usually be used.) It is always necessary to have database superuser access when
restoring a pg_dumpall dump, as that is required to restore the role and tablespace information. If you use
tablespaces, make sure that the tablespace paths in the dump are appropriate for the new installation.

187

https://www.postgresql.org/docs/current/app-psql.html
https://www.postgresql.org/docs/current/app-pgrestore.html
https://www.postgresql.org/docs/current/sql-analyze.html
https://www.postgresql.org/docs/current/app-pg-dumpall.html

pg_dumpall works by emitting commands to re-create roles, tablespaces, and empty databases, then
invoking pg_dump for each database. This means that while each database will be internally consistent, the
snapshots of different databases are not synchronized.

Cluster-wide data can be dumped alone using the pg_dumpall --globals-only option. This is necessary to
fully backup the cluster if running the pg_dump command on individual databases.

Handling Large Databases

Some operating systems have maximum file size limits that cause problems when creating large pg_dump
output files. Fortunately, pg_dump can write to the standard output, so you can use standard Unix tools to
work around this potential problem. There are several possible methods:

Use compressed dumps. You can use your favorite compression program, for example gzip:

pg_dump dbname | gzip > filename.gz

Reload with：

gunzip -c filename.gz | psql dbname

or:

cat filename.gz | gunzip | psql dbname

Use split. The split command allows you to split the output into smaller files that are acceptable in size to
the underlying file system. For example, to make 2 gigabyte chunks:

pg_dump dbname | split -b 2G - filename

Reload with:

cat filename* | psql dbname

If using GNU split, it is possible to use it and gzip together:

pg_dump dbname | split -b 2G -−filter='gzip > $FILE.gz'

It can be restored using zcat.

Use pg_dump’s custom dump format. If IvorySQL was built on a system with the zlib compression library
installed, the custom dump format will compress data as it writes it to the output file. This will produce
dump file sizes similar to using gzip, but it has the added advantage that tables can be restored selectively.
The following command dumps a database using the custom dump format:

pg_dump -Fc dbname > filename

A custom-format dump is not a script for psql, but instead must be restored with pg_restore, for example:

188

pg_restore -d dbname filename

See the pg_dump and pg_restore reference pages for details.

For very large databases, you might need to combine split with one of the other two approaches.

Use pg_dump’s parallel dump feature. To speed up the dump of a large database, you can use
pg_dump’s parallel mode. This will dump multiple tables at the same time. You can control the degree of
parallelism with the -j parameter. Parallel dumps are only supported for the "directory" archive format.

pg_dump -j num -F d -f out.dir dbname

You can use pg_restore -j to restore a dump in parallel. This will work for any archive of either the "custom"
or the "directory" archive mode, whether or not it has been created with pg_dump -j.

File System Level Backup

An alternative backup strategy is to directly copy the files that IvorySQL uses to
store the data in the database，You can use whatever method you prefer for doing file
system backups; for example:

tar -cf backup.tar /usr/local/pgsql/data

There are two restrictions, however, which make this method impractical, or at least inferior to the pg_dump
method:

1. The database server must be shut down in order to get a usable backup. Half-way measures such as
disallowing all connections will not work (in part because tar and similar tools do not take an atomic
snapshot of the state of the file system, but also because of internal buffering within the server).Needless
to say, you also need to shut down the server before restoring the data.

2. If you have dug into the details of the file system layout of the database, you might be tempted to try to
back up or restore only certain individual tables or databases from their respective files or directories.
This will not work because the information contained in these files is not usable without the commit log
files, pg_xact/*, which contain the commit status of all transactions. A table file is only usable with this
information. Of course it is also impossible to restore only a table and the associated pg_xact data
because that would render all other tables in the database cluster useless. So file system backups only
work for complete backup and restoration of an entire database cluster.

An alternative file-system backup approach is to make a “consistent snapshot” of the data directory, if the
file system supports that functionality (and you are willing to trust that it is implemented correctly). The
typical procedure is to make a “frozen snapshot” of the volume containing the database, then copy the
whole data directory (not just parts, see above) from the snapshot to a backup device, then release the
frozen snapshot. This will work even while the database server is running. However, a backup created in this
way saves the database files in a state as if the database server was not properly shut down; therefore, when
you start the database server on the backed-up data, it will think the previous server instance crashed and
will replay the WAL log. This is not a problem; just be aware of it (and be sure to include the WAL files in your
backup). You can perform a CHECKPOINT before taking the snapshot to reduce recovery time.

If your database is spread across multiple file systems, there might not be any way to obtain exactly-
simultaneous frozen snapshots of all the volumes. For example, if your data files and WAL log are on different
disks, or if tablespaces are on different file systems, it might not be possible to use snapshot backup because
the snapshots must be simultaneous. Read your file system documentation very carefully before trusting the
consistent-snapshot technique in such situations.

189

https://www.postgresql.org/docs/current/app-pgdump.html
https://www.postgresql.org/docs/current/app-pgrestore.html

If simultaneous snapshots are not possible, one option is to shut down the database server long enough to
establish all the frozen snapshots. Another option is to perform a continuous archiving base backup,because
such backups are immune to file system changes during the backup. This requires enabling continuous
archiving just during the backup process; restore is done using continuous archive recovery

Another option is to use rsync to perform a file system backup. This is done by first running rsync while the
database server is running, then shutting down the database server long enough to do an rsync --checksum.
(--checksum is necessary because rsync only has file modification-time granularity of one second.) The
second rsync will be quicker than the first, because it has relatively little data to transfer, and the end result
will be consistent because the server was down. This method allows a file system backup to be performed
with minimal downtime.

Note that a file system backup will typically be larger than an SQL dump. (pg_dump does not need to dump
the contents of indexes for example, just the commands to recreate them.) However, taking a file system
backup might be faster.

Continuous Archiving and Point-in-Time Recovery (PITR)

At all times,IvorySQLmaintains a write ahead log (WAL) in the pg_wal/ subdirectory of the cluster’s data
directory. The log records every change made to the database’s data files. This log exists primarily for
crash-safety purposes: if the system crashes, the database can be restored to consistency by “replaying”
the log entries made since the last checkpoint. However, the existence of the log makes it possible to use a
third strategy for backing up databases: we can combine a file-system-level backup with backup of the WAL
files. If recovery is needed, we restore the file system backup and then replay from the backed-up WAL files to
bring the system to a current state. This approach is more complex to administer than either of the previous
approaches, but it has some significant benefits:

• We do not need a perfectly consistent file system backup as the starting point. Any internal inconsistency
in the backup will be corrected by log replay (this is not significantly different from what happens during
crash recovery). So we do not need a file system snapshot capability, just tar or a similar archiving tool.

• Since we can combine an indefinitely long sequence of WAL files for replay, continuous backup can be
achieved simply by continuing to archive the WAL files. This is particularly valuable for large databases,
where it might not be convenient to take a full backup frequently.

• It is not necessary to replay the WAL entries all the way to the end. We could stop the replay at any point
and have a consistent snapshot of the database as it was at that time. Thus, this technique supports
point-in-time recovery: it is possible to restore the database to its state at any time since your base
backup was taken.

• If we continuously feed the series of WAL files to another machine that has been loaded with the same
base backup file, we have a warm standby system: at any point we can bring up the second machine and
it will have a nearly-current copy of the database.

Note: pg_dump and pg_dumpall do not produce file-system-level backups and cannot be used as part of a
continuous-archiving solution. Such dumps are logical and do not contain enough information to be used
by WAL replay.

As with the plain file-system-backup technique, this method can only support restoration of an entire
database cluster, not a subset. Also, it requires a lot of archival storage: the base backup might be bulky, and
a busy system will generate many megabytes of WAL traffic that have to be archived. Still, it is the preferred
backup technique in many situations where high reliability is needed.

To recover successfully using continuous archiving (also called “online backup” by many database
vendors), you need a continuous sequence of archived WAL files that extends back at least as far as the start
time of your backup. So to get started, you should set up and test your procedure for archiving WAL files
before you take your first base backup. Accordingly, we first discuss the mechanics of archiving WAL files.For
more information on how to create archives and backups and the key points during operation, please refer
to doc。

190

https://www.postgresql.org/docs/15/backup.html

Loading and unloading data
COPY moves data between IvorySQL tables and standard file-system files. COPY TO copies the contents of a
table to a file, while COPY FROM copies data from a file to a table (appending the data to whatever is in the
table already). COPY TO can also copy the results of a SELECT query.

If a column list is specified, COPY TO copies only the data in the specified columns to the file. For COPY FROM,
each field in the file is inserted, in order, into the specified column. Table columns not specified in the COPY
FROM column list will receive their default values.

COPY with a file name instructs the IvorySQL server to directly read from or write to a file. The file must be
accessible by the IvorySQL user (the user ID the server runs as) and the name must be specified from the
viewpoint of the server. When PROGRAM is specified, the server executes the given command and reads from
the standard output of the program, or writes to the standard input of the program. The command must be
specified from the viewpoint of the server, and be executable by the IvorySQL user. When STDIN or STDOUT is
specified, data is transmitted via the connection between the client and the server.

Each backend running COPY will report its progress in the pg_stat_progress_copy view.

Synopsis

COPY table_name [(column_name [, ...])]
 FROM { 'filename' | PROGRAM 'command' | STDIN }
 [[WITH] (option [, ...])]
 [WHERE condition]

COPY { table_name [(column_name [, ...])] | (query) }
 TO { 'filename' | PROGRAM 'command' | STDOUT }
 [[WITH] (option [, ...])]

where option can be one of:

 FORMAT format_name
 FREEZE [boolean]
 DELIMITER 'delimiter_character'
 NULL 'null_string'
 HEADER [boolean]
 QUOTE 'quote_character'
 ESCAPE 'escape_character'
 FORCE_QUOTE { (column_name [, ...]) | * }
 FORCE_NOT_NULL (column_name [, ...])
 FORCE_NULL (column_name [, ...])
 ENCODING 'encoding_name'

For detailed parameter settings, please refer to doc.

Outputs

On successful completion, a COPY command returns a command tag of the form

191

https://www.postgresql.org/docs/15/sql-copy.html

COPY count

The count is the number of rows copied.

Note： psql will print this command tag only if the command was not COPY … TO STDOUT, or the equivalent
psql meta-command \copy … to stdout. This is to prevent confusing the command tag with the data that
was just printed.

Notes

COPY TO can be used only with plain tables, not views, and does not copy rows from child tables or child
partitions. For example, COPY `table TO` copies the same rows as SELECT * FROM ONLY `table. The
syntax `COPY (SELECT * FROM `table) TO …` can be used to dump all of the rows in an inheritance
hierarchy, partitioned table, or view.

COPY FROM can be used with plain, foreign, or partitioned tables or with views that have INSTEAD OF INSERT
triggers.

You must have select privilege on the table whose values are read by COPY TO, and insert privilege on the
table into which values are inserted by COPY FROM. It is sufficient to have column privileges on the column(s)
listed in the command.

If row-level security is enabled for the table, the relevant SELECT policies will apply to COPY `table TO`
statements. Currently, COPY FROM is not supported for tables with row-level security. Use equivalent INSERT
statements instead.

Files named in a COPY command are read or written directly by the server, not by the client application.
Therefore, they must reside on or be accessible to the database server machine, not the client. They must be
accessible to and readable or writable by the IvorySQL user (the user ID the server runs as), not the client.
Similarly, the command specified with PROGRAM is executed directly by the server, not by the client
application, must be executable by the IvorySQL user. COPY naming a file or command is only allowed to
database superusers or users who are granted one of the roles pg_read_server_files,
pg_write_server_files, or pg_execute_server_program, since it allows reading or writing any file or running
a program that the server has privileges to access.

Do not confuse COPY with the psql instruction \copy. \copy invokes COPY FROM STDIN or COPY TO STDOUT, and
then fetches/stores the data in a file accessible to the psql client. Thus, file accessibility and access rights
depend on the client rather than the server when \copy is used.

It is recommended that the file name used in COPY always be specified as an absolute path. This is enforced
by the server in the case of COPY TO, but for COPY FROM you do have the option of reading from a file specified
by a relative path. The path will be interpreted relative to the working directory of the server process
(normally the cluster’s data directory), not the client’s working directory.

Executing a command with PROGRAM might be restricted by the operating system’s access control
mechanisms, such as SELinux.

COPY FROM will invoke any triggers and check constraints on the destination table. However, it will not invoke
rules.

For identity columns, the COPY FROM command will always write the column values provided in the input
data, like the INSERT option OVERRIDING SYSTEM VALUE.

COPY input and output is affected by DateStyle. To ensure portability to other IvorySQL installations that
might use non-default DateStyle settings, DateStyle should be set to ISO before using COPY TO. It is also a
good idea to avoid dumping data with IntervalStyle set to sql_standard, because negative interval values
might be misinterpreted by a server that has a different setting for IntervalStyle.

Input data is interpreted according to ENCODING option or the current client encoding, and output data is

192

encoded in ENCODING or the current client encoding, even if the data does not pass through the client but is
read from or written to a file directly by the server.

COPY stops operation at the first error. This should not lead to problems in the event of a COPY TO, but the
target table will already have received earlier rows in a COPY FROM. These rows will not be visible or
accessible, but they still occupy disk space. This might amount to a considerable amount of wasted disk
space if the failure happened well into a large copy operation. You might wish to invoke VACUUM to recover
the wasted space.

FORCE_NULL and FORCE_NOT_NULL can be used simultaneously on the same column. This results in converting
quoted null strings to null values and unquoted null strings to empty strings.

File Formats

Text Format

When the text format is used, the data read or written is a text file with one line per table row. Columns in a
row are separated by the delimiter character. The column values themselves are strings generated by the
output function, or acceptable to the input function, of each attribute’s data type. The specified null string
is used in place of columns that are null. COPY FROM will raise an error if any line of the input file contains
more or fewer columns than are expected.

End of data can be represented by a single line containing just backslash-period (\.). An end-of-data marker
is not necessary when reading from a file, since the end of file serves perfectly well; it is needed only when
copying data to or from client applications using pre-3.0 client protocol.

Backslash characters (\) can be used in the COPY data to quote data characters that might otherwise be
taken as row or column delimiters. In particular, the following characters must be preceded by a backslash if
they appear as part of a column value: backslash itself, newline, carriage return, and the current delimiter
character.

The specified null string is sent by COPY TO without adding any backslashes; conversely, COPY FROM matches
the input against the null string before removing backslashes. Therefore, a null string such as \N cannot be
confused with the actual data value \N (which would be represented as \\N).

The following special backslash sequences are recognized by COPY FROM:

Sequence Represents
\b Backspace (ASCII 8)
\f Form feed (ASCII 12)
\n Newline (ASCII 10)
\r Carriage return (ASCII 13)
\t Tab (ASCII 9)
\v Vertical tab (ASCII 11)
\digits Backslash followed by one to three octal digits

specifies the byte with that numeric code
\xdigits Backslash x followed by one or two hex digits

specifies the byte with that numeric code

Presently, COPY TO will never emit an octal or hex-digits backslash sequence, but it does use the other
sequences listed above for those control characters.

Any other backslashed character that is not mentioned in the above table will be taken to represent itself.
However, beware of adding backslashes unnecessarily, since that might accidentally produce a string
matching the end-of-data marker (\.) or the null string (\N by default). These strings will be recognized
before any other backslash processing is done.

It is strongly recommended that applications generating COPY data convert data newlines and carriage

193

returns to the \n and \r sequences respectively. At present it is possible to represent a data carriage return
by a backslash and carriage return, and to represent a data newline by a backslash and newline. However,
these representations might not be accepted in future releases. They are also highly vulnerable to corruption
if the COPY file is transferred across different machines (for example, from Unix to Windows or vice versa).

All backslash sequences are interpreted after encoding conversion. The bytes specified with the octal and
hex-digit backslash sequences must form valid characters in the database encoding.

COPY TO will terminate each row with a Unix-style newline (“\n”). Servers running on Microsoft Windows
instead output carriage return/newline (“\r\n”), but only for COPY to a server file; for consistency across
platforms, COPY TO STDOUT always sends “\n” regardless of server platform. COPY FROM can handle lines
ending with newlines, carriage returns, or carriage return/newlines. To reduce the risk of error due to un-
backslashed newlines or carriage returns that were meant as data, COPY FROM will complain if the line
endings in the input are not all alike.

CSV Format

This format option is used for importing and exporting the Comma Separated Value (CSV) file format used by
many other programs, such as spreadsheets. Instead of the escaping rules used by IvorySQL’s standard
text format, it produces and recognizes the common CSV escaping mechanism.

The values in each record are separated by the DELIMITER character. If the value contains the delimiter
character, the QUOTE character, the NULL string, a carriage return, or line feed character, then the whole value
is prefixed and suffixed by the QUOTE character, and any occurrence within the value of a QUOTE character or
the ESCAPE character is preceded by the escape character. You can also use FORCE_QUOTE to force quotes
when outputting non-NULL values in specific columns.

The CSV format has no standard way to distinguish a NULL value from an empty string. IvorySQL’s COPY
handles this by quoting. A NULL is output as the NULL parameter string and is not quoted, while a non-NULL
value matching the NULL parameter string is quoted. For example, with the default settings, a NULL is written
as an unquoted empty string, while an empty string data value is written with double quotes (""). Reading
values follows similar rules. You can use FORCE_NOT_NULL to prevent NULL input comparisons for specific
columns. You can also use FORCE_NULL to convert quoted null string data values to NULL.

Because backslash is not a special character in the CSV format, \., the end-of-data marker, could also appear
as a data value. To avoid any misinterpretation, a \. data value appearing as a lone entry on a line is
automatically quoted on output, and on input, if quoted, is not interpreted as the end-of-data marker. If you
are loading a file created by another application that has a single unquoted column and might have a value
of \., you might need to quote that value in the input file.

Note
CSV format, all characters are significant. A quoted value surrounded by white space, or any characters
other than DELIMITER, will include those characters. This can cause errors if you import data from a
system that pads CSV lines with white space out to some fixed width. If such a situation arises you
might need to preprocess the CSV file to remove the trailing white space, before importing the data
into IvorySQL.

Note
CSV format will both recognize and produce CSV files with quoted values containing embedded
carriage returns and line feeds. Thus the files are not strictly one line per table row like text-format
files.

Note
Many programs produce strange and occasionally perverse CSV files, so the file format is more a
convention than a standard. Thus you might encounter some files that cannot be imported using this

194

mechanism, and COPY might produce files that other programs cannot process.

Binary Format

The binary format option causes all data to be stored/read as binary format rather than as text. It is
somewhat faster than the text and CSV formats, but a binary-format file is less portable across machine
architectures and IvorySQL versions. Also, the binary format is very data type specific; for example it will not
work to output binary data from a smallint column and read it into an integer column, even though that
would work fine in text format.

The binary file format consists of a file header, zero or more tuples containing the row data, and a file trailer.
Headers and data are in network byte order.

File Header
The file header consists of 15 bytes of fixed fields, followed by a variable-length header extension area.

The fixed fields are:

Signature
11-byte sequence PGCOPY\n\377\r\n\0 — note that the zero byte is a required part of the signature. (The
signature is designed to allow easy identification of files that have been munged by a non-8-bit-clean
transfer. This signature will be changed by end-of-line-translation filters, dropped zero bytes, dropped
high bits, or parity changes.)

Flags field
32-bit integer bit mask to denote important aspects of the file format. Bits are numbered from 0 (LSB) to
31 (MSB). Note that this field is stored in network byte order (most significant byte first), as are all the
integer fields used in the file format. Bits 16–31 are reserved to denote critical file format issues; a reader
should abort if it finds an unexpected bit set in this range. Bits 0–15 are reserved to signal backwards-
compatible format issues; a reader should simply ignore any unexpected bits set in this range. Currently
only one flag bit is defined, and the rest must be zero:

Bit 16
If 1, OIDs are included in the data; if 0, not. Oid system columns are not supported in IvorySQL anymore,
but the format still contains the indicator.

Header extension area length
32-bit integer, length in bytes of remainder of header, not including self. Currently, this is zero, and the
first tuple follows immediately. Future changes to the format might allow additional data to be present in
the header. A reader should silently skip over any header extension data it does not know what to do
with.

The header extension area is envisioned to contain a sequence of self-identifying chunks. The flags field is
not intended to tell readers what is in the extension area. Specific design of header extension contents is left
for a later release.

This design allows for both backwards-compatible header additions (add header extension chunks, or set
low-order flag bits) and non-backwards-compatible changes (set high-order flag bits to signal such changes,
and add supporting data to the extension area if needed).

Tuples
Each tuple begins with a 16-bit integer count of the number of fields in the tuple. (Presently, all tuples in a
table will have the same count, but that might not always be true.) Then, repeated for each field in the
tuple, there is a 32-bit length word followed by that many bytes of field data. (The length word does not
include itself, and can be zero.) As a special case, -1 indicates a NULL field value. No value bytes follow in
the NULL case.

There is no alignment padding or any other extra data between fields.

Presently, all data values in a binary-format file are assumed to be in binary format (format code one). It is

195

anticipated that a future extension might add a header field that allows per-column format codes to be
specified.

To determine the appropriate binary format for the actual tuple data you should consult the PostgreSQL
source, in particular the *send and *recv functions for each column’s data type (typically these functions
are found in the src/backend/utils/adt/ directory of the source distribution).

If OIDs are included in the file, the OID field immediately follows the field-count word. It is a normal field
except that it’s not included in the field-count. Note that oid system columns are not supported in current
versions of IvorySQL.

File Trailer

The file trailer consists of a 16-bit integer word containing -1. This is easily distinguished from a tuple’s
field-count word.

A reader should report an error if a field-count word is neither -1 nor the expected number of columns. This
provides an extra check against somehow getting out of sync with the data.

Examples

The following example copies a table to the client using the vertical bar (|) as the field delimiter:

COPY country TO STDOUT (DELIMITER '|');

To copy data from a file into the country table:

COPY country TO STDOUT (DELIMITER '|');

To copy into a file just the countries whose names start with 'A':

COPY (SELECT * FROM country WHERE country_name LIKE 'A%') TO
'/usr1/proj/bray/sql/a_list_countries.copy';

To copy into a compressed file, you can pipe the output through an external compression program:

COPY country TO PROGRAM 'gzip > /usr1/proj/bray/sql/country_data.gz';

Here is a sample of data suitable for copying into a table from STDIN:

AF AFGHANISTAN
AL ALBANIA
DZ ALGERIA
ZM ZAMBIA
ZW ZIMBABWE

Note that the white space on each line is actually a tab character.

196

The following is the same data, output in binary format. The data is shown after filtering through the Unix
utility od -c. The table has three columns; the first has type char(2), the second has type text, and the third
has type integer. All the rows have a null value in the third column.

0000000 P G C O P Y \n 377 \r \n \0 \0 \0 \0 \0 \0
0000020 \0 \0 \0 \0 003 \0 \0 \0 002 A F \0 \0 \0 013 A
0000040 F G H A N I S T A N 377 377 377 377 \0 003
0000060 \0 \0 \0 002 A L \0 \0 \0 007 A L B A N I
0000100 A 377 377 377 377 \0 003 \0 \0 \0 002 D Z \0 \0 \0
0000120 007 A L G E R I A 377 377 377 377 \0 003 \0 \0
0000140 \0 002 Z M \0 \0 \0 006 Z A M B I A 377 377
0000160 377 377 \0 003 \0 \0 \0 002 Z W \0 \0 \0 \b Z I
0000200 M B A B W E 377 377 377 377 377 377

The remaining details can see doc.

Performance Tips
Query performance can be affected by a variety of factors. Some of these factors can be controlled by the
user, while others are fundamentals of the system’s lower-level design.

Using EXPLAIN

IvorySQL devises a query plan for each query it receives. Choosing the right plan to match the query
structure and the properties of the data is absolutely critical for good performance, so the system includes a
complex planner that tries to choose good plans. You can use the EXPLAIN command to see what query plan
the planner creates for any query. Plan-reading is an art that requires some experience to master, but this
section attempts to cover the basics.

The examples use `EXPLAIN’s default “text” output format, which is compact and convenient for
humans to read. If you want to feed `EXPLAIN’s output to a program for further analysis, you should use
one of its machine-readable output formats (XML, JSON, or YAML) instead.

EXPLAIN Basics

The structure of a query plan is a tree of plan nodes. Nodes at the bottom level of the tree are scan nodes:
they return raw rows from a table. There are different types of scan nodes for different table access methods:
sequential scans, index scans, and bitmap index scans. There are also non-table row sources, such as VALUES
clauses and set-returning functions in FROM, which have their own scan node types. If the query requires
joining, aggregation, sorting, or other operations on the raw rows, then there will be additional nodes above
the scan nodes to perform these operations. Again, there is usually more than one possible way to do these
operations, so different node types can appear here too. The output of EXPLAIN has one line for each node in
the plan tree, showing the basic node type plus the cost estimates that the planner made for the execution
of that plan node. Additional lines might appear, indented from the node’s summary line, to show
additional properties of the node. The very first line (the summary line for the topmost node) has the
estimated total execution cost for the plan; it is this number that the planner seeks to minimize.

Here is a trivial example, just to show what the output looks like:

EXPLAIN SELECT * FROM tenk1;

 QUERY PLAN

197

https://www.postgresql.org/docs/15/sql-copy.html
https://www.postgresql.org/docs/15/sql-explain.html

 Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

Since this query has no WHERE clause, it must scan all the rows of the table, so the planner has chosen to use
a simple sequential scan plan. The numbers that are quoted in parentheses are (left to right):

• Estimated start-up cost. This is the time expended before the output phase can begin, e.g., time to do
the sorting in a sort node.

• Estimated total cost. This is stated on the assumption that the plan node is run to completion, i.e., all
available rows are retrieved. In practice a node’s parent node might stop short of reading all available
rows (see the LIMIT example below).

• Estimated number of rows output by this plan node. Again, the node is assumed to be run to
completion.

• Estimated average width of rows output by this plan node (in bytes).

The costs are measured in arbitrary units determined by the planner’s cost parameters .Traditional
practice is to measure the costs in units of disk page fetches; that is, seq_page_cost is conventionally set to
1.0 and the other cost parameters are set relative to that. The examples in this section are run with the
default cost parameters.

It’s important to understand that the cost of an upper-level node includes the cost of all its child nodes.
It’s also important to realize that the cost only reflects things that the planner cares about. In particular, the
cost does not consider the time spent transmitting result rows to the client, which could be an important
factor in the real elapsed time; but the planner ignores it because it cannot change it by altering the plan.
(Every correct plan will output the same row set, we trust.)

The rows value is a little tricky because it is not the number of rows processed or scanned by the plan node,
but rather the number emitted by the node. This is often less than the number scanned, as a result of
filtering by any WHERE-clause conditions that are being applied at the node. Ideally the top-level rows
estimate will approximate the number of rows actually returned, updated, or deleted by the query.

Returning to our example:

EXPLAIN SELECT * FROM tenk1;

 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

These numbers are derived very straightforwardly. If you do:

SELECT relpages, reltuples FROM pg_class WHERE relname = 'tenk1';

you will find that tenk1 has 358 disk pages and 10000 rows. The estimated cost is computed as (disk pages
read * seq_page_cost) + (rows scanned * cpu_tuple_cost). By default, seq_page_cost is 1.0 and
cpu_tuple_cost is 0.01, so the estimated cost is (358 * 1.0) + (10000 * 0.01) = 458.

Now let’s modify the query to add a WHERE condition:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 7000;

 QUERY PLAN

198

https://www.postgresql.org/docs/15/runtime-config-query.html#GUC-SEQ-PAGE-COST
https://www.postgresql.org/docs/15/runtime-config-query.html#GUC-SEQ-PAGE-COST
https://www.postgresql.org/docs/15/runtime-config-query.html#GUC-CPU-TUPLE-COST

--
 Seq Scan on tenk1 (cost=0.00..483.00 rows=7001 width=244)
 Filter: (unique1 < 7000)

Notice that the EXPLAIN output shows the WHERE clause being applied as a “filter” condition attached to
the Seq Scan plan node. This means that the plan node checks the condition for each row it scans, and
outputs only the ones that pass the condition. The estimate of output rows has been reduced because of the
WHERE clause. However, the scan will still have to visit all 10000 rows, so the cost hasn’t decreased; in fact it
has gone up a bit (by 10000 * cpu_operator_cost, to be exact) to reflect the extra CPU time spent checking
the WHERE condition.

The actual number of rows this query would select is 7000, but the rows estimate is only approximate. If you
try to duplicate this experiment, you will probably get a slightly different estimate; moreover, it can change
after each ANALYZE command, because the statistics produced by ANALYZE are taken from a randomized
sample of the table.

Now, let’s make the condition more restrictive:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100;

 QUERY PLAN
--
 Bitmap Heap Scan on tenk1 (cost=5.07..229.20 rows=101 width=244)
 Recheck Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
 Index Cond: (unique1 < 100)

Here the planner has decided to use a two-step plan: the child plan node visits an index to find the locations
of rows matching the index condition, and then the upper plan node actually fetches those rows from the
table itself. Fetching rows separately is much more expensive than reading them sequentially, but because
not all the pages of the table have to be visited, this is still cheaper than a sequential scan. (The reason for
using two plan levels is that the upper plan node sorts the row locations identified by the index into physical
order before reading them, to minimize the cost of separate fetches. The “bitmap” mentioned in the node
names is the mechanism that does the sorting.)

Now let’s add another condition to the WHERE clause:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND stringu1 = 'xxx';

 QUERY PLAN
--
 Bitmap Heap Scan on tenk1 (cost=5.04..229.43 rows=1 width=244)
 Recheck Cond: (unique1 < 100)
 Filter: (stringu1 = 'xxx'::name)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
 Index Cond: (unique1 < 100)

The added condition stringu1 = 'xxx' reduces the output row count estimate, but not the cost because
we still have to visit the same set of rows. Notice that the stringu1 clause cannot be applied as an index
condition, since this index is only on the unique1 column. Instead it is applied as a filter on the rows retrieved

199

https://www.postgresql.org/docs/15/runtime-config-query.html#GUC-CPU-OPERATOR-COST

by the index. Thus the cost has actually gone up slightly to reflect this extra checking.

In some cases the planner will prefer a “simple” index scan plan:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 = 42;

 QUERY PLAN
--
 Index Scan using tenk1_unique1 on tenk1 (cost=0.29..8.30 rows=1 width=244)
 Index Cond: (unique1 = 42)

In this type of plan the table rows are fetched in index order, which makes them even more expensive to
read, but there are so few that the extra cost of sorting the row locations is not worth it. You’ll most often
see this plan type for queries that fetch just a single row. It’s also often used for queries that have an ORDER
BY condition that matches the index order, because then no extra sorting step is needed to satisfy the ORDER
BY. In this example, adding ORDER BY unique1 would use the same plan because the index already implicitly
provides the requested ordering.

The planner may implement an ORDER BY clause in several ways. The above example shows that such an
ordering clause may be implemented implicitly. The planner may also add an explicit sort step:

EXPLAIN SELECT * FROM tenk1 ORDER BY unique1;
 QUERY PLAN

 Sort (cost=1109.39..1134.39 rows=10000 width=244)
 Sort Key: unique1
 -> Seq Scan on tenk1 (cost=0.00..445.00 rows=10000 width=244)

If a part of the plan guarantees an ordering on a prefix of the required sort keys,
then the planner may instead decide to use an `incremental sort` step:

EXPLAIN SELECT * FROM tenk1 ORDER BY four, ten LIMIT 100;
 QUERY PLAN

 Limit (cost=521.06..538.05 rows=100 width=244)
 -> Incremental Sort (cost=521.06..2220.95 rows=10000 width=244)
 Sort Key: four, ten
 Presorted Key: four
 -> Index Scan using index_tenk1_on_four on tenk1 (cost=0.29..1510.08
rows=10000 width=244)

Compared to regular sorts, sorting incrementally allows returning tuples before the entire result set has been
sorted, which particularly enables optimizations with LIMIT queries. It may also reduce memory usage and
the likelihood of spilling sorts to disk, but it comes at the cost of the increased overhead of splitting the
result set into multiple sorting batches.

200

If there are separate indexes on several of the columns referenced in WHERE, the planner might choose to use
an AND or OR combination of the indexes:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000;

 QUERY PLAN

 Bitmap Heap Scan on tenk1 (cost=25.08..60.21 rows=10 width=244)
 Recheck Cond: ((unique1 < 100) AND (unique2 > 9000))
 -> BitmapAnd (cost=25.08..25.08 rows=10 width=0)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
 Index Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.78 rows=999 width=0)
 Index Cond: (unique2 > 9000)

But this requires visiting both indexes, so it’s not necessarily a win compared to using just one index and
treating the other condition as a filter. If you vary the ranges involved you’ll see the plan change
accordingly.

Here is an example showing the effects of LIMIT:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000 LIMIT 2;

 QUERY PLAN

 Limit (cost=0.29..14.48 rows=2 width=244)
 -> Index Scan using tenk1_unique2 on tenk1 (cost=0.29..71.27 rows=10 width=244)
 Index Cond: (unique2 > 9000)
 Filter: (unique1 < 100)

This is the same query as above, but we added a LIMIT so that not all the rows need be retrieved, and the
planner changed its mind about what to do. Notice that the total cost and row count of the Index Scan node
are shown as if it were run to completion. However, the Limit node is expected to stop after retrieving only a
fifth of those rows, so its total cost is only a fifth as much, and that’s the actual estimated cost of the query.
This plan is preferred over adding a Limit node to the previous plan because the Limit could not avoid
paying the startup cost of the bitmap scan, so the total cost would be something over 25 units with that
approach.

Let’s try joining two tables, using the columns we have been discussing:

EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2;

 QUERY PLAN

201

 Nested Loop (cost=4.65..118.62 rows=10 width=488)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10 width=244)
 Recheck Cond: (unique1 < 10)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0)
 Index Cond: (unique1 < 10)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..7.91 rows=1 width=244)
 Index Cond: (unique2 = t1.unique2)

In this plan, we have a nested-loop join node with two table scans as inputs, or children. The indentation of
the node summary lines reflects the plan tree structure. The join’s first, or “outer”, child is a bitmap scan
similar to those we saw before. Its cost and row count are the same as we’d get from SELECT … WHERE
unique1 < 10 because we are applying the WHERE clause unique1 < 10 at that node. The t1.unique2 =
t2.unique2 clause is not relevant yet, so it doesn’t affect the row count of the outer scan. The nested-loop
join node will run its second, or “inner” child once for each row obtained from the outer child. Column
values from the current outer row can be plugged into the inner scan; here, the t1.unique2 value from the
outer row is available, so we get a plan and costs similar to what we saw above for a simple SELECT … WHERE
t2.unique2 = `constant` case. (The estimated cost is actually a bit lower than what was seen above, as a
result of caching that’s expected to occur during the repeated index scans on t2.) The costs of the loop
node are then set on the basis of the cost of the outer scan, plus one repetition of the inner scan for each
outer row (10 * 7.91, here), plus a little CPU time for join processing.

In this example the join’s output row count is the same as the product of the two scans' row counts, but
that’s not true in all cases because there can be additional WHERE clauses that mention both tables and so
can only be applied at the join point, not to either input scan. Here’s an example:

EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t2.unique2 < 10 AND t1.hundred < t2.hundred;

 QUERY PLAN

 Nested Loop (cost=4.65..49.46 rows=33 width=488)
 Join Filter: (t1.hundred < t2.hundred)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10 width=244)
 Recheck Cond: (unique1 < 10)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0)
 Index Cond: (unique1 < 10)
 -> Materialize (cost=0.29..8.51 rows=10 width=244)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..8.46 rows=10
width=244)
 Index Cond: (unique2 < 10)

The condition t1.hundred < t2.hundred can’t be tested in the tenk2_unique2 index, so it’s applied at the
join node. This reduces the estimated output row count of the join node, but does not change either input
scan.

Notice that here the planner has chosen to “materialize” the inner relation of the join, by putting a
Materialize plan node atop it. This means that the t2 index scan will be done just once, even though the
nested-loop join node needs to read that data ten times, once for each row from the outer relation. The

202

Materialize node saves the data in memory as it’s read, and then returns the data from memory on each
subsequent pass.

When dealing with outer joins, you might see join plan nodes with both “Join Filter” and plain “Filter”
conditions attached. Join Filter conditions come from the outer join’s ON clause, so a row that fails the Join
Filter condition could still get emitted as a null-extended row. But a plain Filter condition is applied after the
outer-join rules and so acts to remove rows unconditionally. In an inner join there is no semantic difference
between these types of filters.

If we change the query’s selectivity a bit, we might get a very different join plan:

EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

 QUERY PLAN

 Hash Join (cost=230.47..713.98 rows=101 width=488)
 Hash Cond: (t2.unique2 = t1.unique2)
 -> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244)
 -> Hash (cost=229.20..229.20 rows=101 width=244)
 -> Bitmap Heap Scan on tenk1 t1 (cost=5.07..229.20 rows=101 width=244)
 Recheck Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101
width=0)
 Index Cond: (unique1 < 100)

Here, the planner has chosen to use a hash join, in which rows of one table are entered into an in-memory
hash table, after which the other table is scanned and the hash table is probed for matches to each row.
Again note how the indentation reflects the plan structure: the bitmap scan on tenk1 is the input to the Hash
node, which constructs the hash table. That’s then returned to the Hash Join node, which reads rows from
its outer child plan and searches the hash table for each one.

Another possible type of join is a merge join, illustrated here:

EXPLAIN SELECT *
FROM tenk1 t1, onek t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

 QUERY PLAN

 Merge Join (cost=198.11..268.19 rows=10 width=488)
 Merge Cond: (t1.unique2 = t2.unique2)
 -> Index Scan using tenk1_unique2 on tenk1 t1 (cost=0.29..656.28 rows=101
width=244)
 Filter: (unique1 < 100)
 -> Sort (cost=197.83..200.33 rows=1000 width=244)
 Sort Key: t2.unique2

203

 -> Seq Scan on onek t2 (cost=0.00..148.00 rows=1000 width=244)

Merge join requires its input data to be sorted on the join keys. In this plan the tenk1 data is sorted by using
an index scan to visit the rows in the correct order, but a sequential scan and sort is preferred for onek,
because there are many more rows to be visited in that table. (Sequential-scan-and-sort frequently beats an
index scan for sorting many rows, because of the nonsequential disk access required by the index scan.)

One way to look at variant plans is to force the planner to disregard whatever strategy it thought was the
cheapest, using the enable/disable flags .For example, if we’re unconvinced that sequential-scan-and-sort
is the best way to deal with table onek in the previous example, we could try

SET enable_sort = off;

EXPLAIN SELECT *
FROM tenk1 t1, onek t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

 QUERY PLAN

 Merge Join (cost=0.56..292.65 rows=10 width=488)
 Merge Cond: (t1.unique2 = t2.unique2)
 -> Index Scan using tenk1_unique2 on tenk1 t1 (cost=0.29..656.28 rows=101
width=244)
 Filter: (unique1 < 100)
 -> Index Scan using onek_unique2 on onek t2 (cost=0.28..224.79 rows=1000
width=244)

which shows that the planner thinks that sorting onek by index-scanning is about 12% more expensive than
sequential-scan-and-sort. Of course, the next question is whether it’s right about that. We can investigate
that using EXPLAIN ANALYZE, as discussed below.

EXPLAIN ANALYZE

It is possible to check the accuracy of the planner’s estimates by using EXPLAIN’s `ANALYZE option. With
this option, EXPLAIN actually executes the query, and then displays the true row counts and true run time
accumulated within each plan node, along with the same estimates that a plain EXPLAIN shows. For
example, we might get a result like this:

EXPLAIN ANALYZE SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2;

 QUERY PLAN

--
 Nested Loop (cost=4.65..118.62 rows=10 width=488) (actual time=0.128..0.377 rows=10
loops=1)

204

 -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10 width=244) (actual
time=0.057..0.121 rows=10 loops=1)
 Recheck Cond: (unique1 < 10)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0)
(actual time=0.024..0.024 rows=10 loops=1)
 Index Cond: (unique1 < 10)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..7.91 rows=1 width=244)
(actual time=0.021..0.022 rows=1 loops=10)
 Index Cond: (unique2 = t1.unique2)
 Planning time: 0.181 ms
 Execution time: 0.501 ms

Note that the “actual time” values are in milliseconds of real time, whereas the
cost estimates are expressed in arbitrary units; so they are unlikely to match up.
The thing that’s usually most important to look for is whether the estimated row
counts are reasonably close to reality. In this example the estimates were all dead-
on, but that’s quite unusual in practice.

In some query plans, it is possible for a subplan node to be executed more than once. For example, the inner
index scan will be executed once per outer row in the above nested-loop plan. In such cases, the loops value
reports the total number of executions of the node, and the actual time and rows values shown are averages
per-execution. This is done to make the numbers comparable with the way that the cost estimates are
shown. Multiply by the loops value to get the total time actually spent in the node. In the above example, we
spent a total of 0.220 milliseconds executing the index scans on tenk2.

In some cases EXPLAIN ANALYZE shows additional execution statistics beyond the plan node execution times
and row counts. For example, Sort and Hash nodes provide extra information:

EXPLAIN ANALYZE SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2 ORDER BY t1.fivethous;

 QUERY PLAN

 Sort (cost=717.34..717.59 rows=101 width=488) (actual time=7.761..7.774 rows=100
loops=1)
 Sort Key: t1.fivethous
 Sort Method: quicksort Memory: 77kB
 -> Hash Join (cost=230.47..713.98 rows=101 width=488) (actual time=0.711..7.427
rows=100 loops=1)
 Hash Cond: (t2.unique2 = t1.unique2)
 -> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244) (actual
time=0.007..2.583 rows=10000 loops=1)
 -> Hash (cost=229.20..229.20 rows=101 width=244) (actual time=0.659..0.659
rows=100 loops=1)

205

 Buckets: 1024 Batches: 1 Memory Usage: 28kB
 -> Bitmap Heap Scan on tenk1 t1 (cost=5.07..229.20 rows=101
width=244) (actual time=0.080..0.526 rows=100 loops=1)
 Recheck Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101
width=0) (actual time=0.049..0.049 rows=100 loops=1)
 Index Cond: (unique1 < 100)
 Planning time: 0.194 ms
 Execution time: 8.008 ms

The Sort node shows the sort method used (in particular, whether the sort was in-memory or on-disk) and
the amount of memory or disk space needed. The Hash node shows the number of hash buckets and
batches as well as the peak amount of memory used for the hash table. (If the number of batches exceeds
one, there will also be disk space usage involved, but that is not shown.)

Another type of extra information is the number of rows removed by a filter condition:

EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE ten < 7;

 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..483.00 rows=7000 width=244) (actual time=0.016..5.107
rows=7000 loops=1)
 Filter: (ten < 7)
 Rows Removed by Filter: 3000
 Planning time: 0.083 ms
 Execution time: 5.905 ms

These counts can be particularly valuable for filter conditions applied at join nodes. The “Rows Removed”
line only appears when at least one scanned row, or potential join pair in the case of a join node, is rejected
by the filter condition.

A case similar to filter conditions occurs with “lossy” index scans. For example, consider this search for
polygons containing a specific point:

EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon '(0.5,2.0)';

 QUERY PLAN

 Seq Scan on polygon_tbl (cost=0.00..1.05 rows=1 width=32) (actual time=0.044..0.044
rows=0 loops=1)
 Filter: (f1 @> '((0.5,2))'::polygon)
 Rows Removed by Filter: 4
 Planning time: 0.040 ms

206

 Execution time: 0.083 ms

The planner thinks (quite correctly) that this sample table is too small to bother
with an index scan, so we have a plain sequential scan in which all the rows got
rejected by the filter condition. But if we force an index scan to be used, we see:

SET enable_seqscan TO off;

EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon '(0.5,2.0)';

 QUERY PLAN

 Index Scan using gpolygonind on polygon_tbl (cost=0.13..8.15 rows=1 width=32)
(actual time=0.062..0.062 rows=0 loops=1)
 Index Cond: (f1 @> '((0.5,2))'::polygon)
 Rows Removed by Index Recheck: 1
 Planning time: 0.034 ms
 Execution time: 0.144 ms

Here we can see that the index returned one candidate row, which was then rejected by a recheck of the
index condition. This happens because a GiST index is “lossy” for polygon containment tests: it actually
returns the rows with polygons that overlap the target, and then we have to do the exact containment test
on those rows.

EXPLAIN has a BUFFERS option that can be used with ANALYZE to get even more run time statistics:

EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000;

 QUERY PLAN

--
 Bitmap Heap Scan on tenk1 (cost=25.08..60.21 rows=10 width=244) (actual
time=0.323..0.342 rows=10 loops=1)
 Recheck Cond: ((unique1 < 100) AND (unique2 > 9000))
 Buffers: shared hit=15
 -> BitmapAnd (cost=25.08..25.08 rows=10 width=0) (actual time=0.309..0.309 rows=0
loops=1)
 Buffers: shared hit=7
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
(actual time=0.043..0.043 rows=100 loops=1)
 Index Cond: (unique1 < 100)
 Buffers: shared hit=2
 -> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.78 rows=999 width=0)

207

(actual time=0.227..0.227 rows=999 loops=1)
 Index Cond: (unique2 > 9000)
 Buffers: shared hit=5
 Planning time: 0.088 ms
 Execution time: 0.423 ms

The numbers provided by BUFFERS help to identify which parts of the query are the most I/O-intensive.

Keep in mind that because EXPLAIN ANALYZE actually runs the query, any side-effects will happen as usual,
even though whatever results the query might output are discarded in favor of printing the EXPLAIN data. If
you want to analyze a data-modifying query without changing your tables, you can roll the command back
afterwards, for example:

BEGIN;

EXPLAIN ANALYZE UPDATE tenk1 SET hundred = hundred + 1 WHERE unique1 < 100;

 QUERY PLAN

 Update on tenk1 (cost=5.07..229.46 rows=101 width=250) (actual time=14.628..14.628
rows=0 loops=1)
 -> Bitmap Heap Scan on tenk1 (cost=5.07..229.46 rows=101 width=250) (actual
time=0.101..0.439 rows=100 loops=1)
 Recheck Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
(actual time=0.043..0.043 rows=100 loops=1)
 Index Cond: (unique1 < 100)
 Planning time: 0.079 ms
 Execution time: 14.727 ms

ROLLBACK;

As seen in this example, when the query is an INSERT, UPDATE, or DELETE command, the actual work of
applying the table changes is done by a top-level Insert, Update, or Delete plan node. The plan nodes
underneath this node perform the work of locating the old rows and/or computing the new data. So above,
we see the same sort of bitmap table scan we’ve seen already, and its output is fed to an Update node that
stores the updated rows. It’s worth noting that although the data-modifying node can take a considerable
amount of run time (here, it’s consuming the lion’s share of the time), the planner does not currently add
anything to the cost estimates to account for that work. That’s because the work to be done is the same for
every correct query plan, so it doesn’t affect planning decisions.

When an UPDATE or DELETE command affects an inheritance hierarchy, the output might look like this:

EXPLAIN UPDATE parent SET f2 = f2 + 1 WHERE f1 = 101;
 QUERY PLAN

208

 Update on parent (cost=0.00..24.53 rows=4 width=14)
 Update on parent
 Update on child1
 Update on child2
 Update on child3
 -> Seq Scan on parent (cost=0.00..0.00 rows=1 width=14)
 Filter: (f1 = 101)
 -> Index Scan using child1_f1_key on child1 (cost=0.15..8.17 rows=1 width=14)
 Index Cond: (f1 = 101)
 -> Index Scan using child2_f1_key on child2 (cost=0.15..8.17 rows=1 width=14)
 Index Cond: (f1 = 101)
 -> Index Scan using child3_f1_key on child3 (cost=0.15..8.17 rows=1 width=14)
 Index Cond: (f1 = 101)

In this example the Update node needs to consider three child tables as well as the originally-mentioned
parent table. So there are four input scanning subplans, one per table. For clarity, the Update node is
annotated to show the specific target tables that will be updated, in the same order as the corresponding
subplans.

The Planning time shown by EXPLAIN ANALYZE is the time it took to generate the query plan from the parsed
query and optimize it. It does not include parsing or rewriting.

The Execution time shown by EXPLAIN ANALYZE includes executor start-up and shut-down time, as well as
the time to run any triggers that are fired, but it does not include parsing, rewriting, or planning time. Time
spent executing BEFORE triggers, if any, is included in the time for the related Insert, Update, or Delete node;
but time spent executing AFTER triggers is not counted there because AFTER triggers are fired after
completion of the whole plan. The total time spent in each trigger (either BEFORE or AFTER) is also shown
separately. Note that deferred constraint triggers will not be executed until end of transaction and are thus
not considered at all by EXPLAIN ANALYZE.

Caveats

There are two significant ways in which run times measured by EXPLAIN ANALYZE can deviate from normal
execution of the same query. First, since no output rows are delivered to the client, network transmission
costs and I/O conversion costs are not included. Second, the measurement overhead added by EXPLAIN
ANALYZE can be significant, especially on machines with slow gettimeofday() operating-system calls. You
can use the pg_test_timing tool to measure the overhead of timing on your system.

EXPLAIN results should not be extrapolated to situations much different from the one you are actually
testing; for example, results on a toy-sized table cannot be assumed to apply to large tables. The planner’s
cost estimates are not linear and so it might choose a different plan for a larger or smaller table. An extreme
example is that on a table that only occupies one disk page, you’ll nearly always get a sequential scan plan
whether indexes are available or not. The planner realizes that it’s going to take one disk page read to
process the table in any case, so there’s no value in expending additional page reads to look at an index.
(We saw this happening in the polygon_tbl example above.)

There are cases in which the actual and estimated values won’t match up well, but nothing is really wrong.
One such case occurs when plan node execution is stopped short by a LIMIT or similar effect. For example,
in the LIMIT query we used before,

EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000 LIMIT 2;

 QUERY PLAN

209

https://www.postgresql.org/docs/15/pgtesttiming.html

--
 Limit (cost=0.29..14.71 rows=2 width=244) (actual time=0.177..0.249 rows=2 loops=1)
 -> Index Scan using tenk1_unique2 on tenk1 (cost=0.29..72.42 rows=10 width=244)
(actual time=0.174..0.244 rows=2 loops=1)
 Index Cond: (unique2 > 9000)
 Filter: (unique1 < 100)
 Rows Removed by Filter: 287
 Planning time: 0.096 ms
 Execution time: 0.336 ms

the estimated cost and row count for the Index Scan node are shown as though it were run to completion.
But in reality the Limit node stopped requesting rows after it got two, so the actual row count is only 2 and
the run time is less than the cost estimate would suggest. This is not an estimation error, only a discrepancy
in the way the estimates and true values are displayed.

Merge joins also have measurement artifacts that can confuse the unwary. A merge join will stop reading one
input if it’s exhausted the other input and the next key value in the one input is greater than the last key
value of the other input; in such a case there can be no more matches and so no need to scan the rest of the
first input. This results in not reading all of one child, with results like those mentioned for LIMIT. Also, if the
outer (first) child contains rows with duplicate key values, the inner (second) child is backed up and
rescanned for the portion of its rows matching that key value. EXPLAIN ANALYZE counts these repeated
emissions of the same inner rows as if they were real additional rows. When there are many outer duplicates,
the reported actual row count for the inner child plan node can be significantly larger than the number of
rows that are actually in the inner relation.

BitmapAnd and BitmapOr nodes always report their actual row counts as zero, due to implementation
limitations.

Normally, EXPLAIN will display every plan node created by the planner. However, there are cases where the
executor can determine that certain nodes need not be executed because they cannot produce any rows,
based on parameter values that were not available at planning time. (Currently this can only happen for
child nodes of an Append or MergeAppend node that is scanning a partitioned table.) When this happens,
those plan nodes are omitted from the EXPLAIN output and a Subplans Removed: `N` annotation appears
instead.

Statistics Used by the Planner

Single-Column Statistics

As we saw in the previous section, the query planner needs to estimate the number of rows retrieved by a
query in order to make good choices of query plans. This section provides a quick look at the statistics that
the system uses for these estimates.

One component of the statistics is the total number of entries in each table and index, as well as the number
of disk blocks occupied by each table and index. This information is kept in the table pg_class, in the
columns reltuples and relpages. We can look at it with queries similar to this one:

SELECT relname, relkind, reltuples, relpages
FROM pg_class
WHERE relname LIKE 'tenk1%';

 relname | relkind | reltuples | relpages
----------------------+---------+-----------+----------

210

https://www.postgresql.org/docs/15/catalog-pg-class.html

 tenk1 | r | 10000 | 358
 tenk1_hundred | i | 10000 | 30
 tenk1_thous_tenthous | i | 10000 | 30
 tenk1_unique1 | i | 10000 | 30
 tenk1_unique2 | i | 10000 | 30
(5 rows)

Here we can see that tenk1 contains 10000 rows, as do its indexes, but the indexes are (unsurprisingly) much
smaller than the table.

For efficiency reasons, reltuples and relpages are not updated on-the-fly, and so they usually contain
somewhat out-of-date values. They are updated by VACUUM, ANALYZE, and a few DDL commands such as
CREATE INDEX. A VACUUM or ANALYZE operation that does not scan the entire table (which is commonly the
case) will incrementally update the reltuples count on the basis of the part of the table it did scan, resulting
in an approximate value. In any case, the planner will scale the values it finds in pg_class to match the
current physical table size, thus obtaining a closer approximation.

Most queries retrieve only a fraction of the rows in a table, due to WHERE clauses that restrict the rows to be
examined. The planner thus needs to make an estimate of the selectivity of WHERE clauses, that is, the
fraction of rows that match each condition in the WHERE clause. The information used for this task is stored in
the pg_statistic system catalog. Entries in pg_statistic are updated by the ANALYZE and VACUUM ANALYZE
commands, and are always approximate even when freshly updated.

Rather than look at pg_statistic directly, it’s better to look at its view pg_stats when examining the
statistics manually. pg_stats is designed to be more easily readable. Furthermore, pg_stats is readable by
all, whereas pg_statistic is only readable by a superuser. (This prevents unprivileged users from learning
something about the contents of other people’s tables from the statistics. The pg_stats view is restricted
to show only rows about tables that the current user can read.) For example, we might do:

SELECT attname, inherited, n_distinct,
 array_to_string(most_common_vals, E'\n') as most_common_vals
FROM pg_stats
WHERE tablename = 'road';

 attname | inherited | n_distinct | most_common_vals
---------+-----------+------------+------------------------------------
 name | f | -0.363388 | I- 580 Ramp+
 | | | I- 880 Ramp+
 | | | Sp Railroad +
 | | | I- 580 +
 | | | I- 680 Ramp
 name | t | -0.284859 | I- 880 Ramp+
 | | | I- 580 Ramp+
 | | | I- 680 Ramp+
 | | | I- 580 +
 | | | State Hwy 13 Ramp
(2 rows)

Note that two rows are displayed for the same column, one corresponding to the complete inheritance

211

https://www.postgresql.org/docs/15/catalog-pg-statistic.html
https://www.postgresql.org/docs/15/view-pg-stats.html

hierarchy starting at the road table (inherited=t), and another one including only the road table itself
(inherited=f).

The amount of information stored in pg_statistic by ANALYZE, in particular the maximum number of entries
in the most_common_vals and histogram_bounds arrays for each column, can be set on a column-by-column
basis using the ALTER TABLE SET STATISTICS command, or globally by setting the default_statistics_target
configuration variable. The default limit is presently 100 entries. Raising the limit might allow more accurate
planner estimates to be made, particularly for columns with irregular data distributions, at the price of
consuming more space in pg_statistic and slightly more time to compute the estimates. Conversely, a
lower limit might be sufficient for columns with simple data distributions.

Further details about the planner’s use of statistics can be found in doc.

Extended Statistics

It is common to see slow queries running bad execution plans because multiple columns used in the query
clauses are correlated. The planner normally assumes that multiple conditions are independent of each
other, an assumption that does not hold when column values are correlated. Regular statistics, because of
their per-individual-column nature, cannot capture any knowledge about cross-column correlation.
However, IvorySQL has the ability to compute multivariate statistics, which can capture such information.

Because the number of possible column combinations is very large, it’s impractical to compute
multivariate statistics automatically. Instead, extended statistics objects, more often called just statistics
objects, can be created to instruct the server to obtain statistics across interesting sets of columns.

Statistics objects are created using the CREATE STATISTICS command. Creation of such an object merely
creates a catalog entry expressing interest in the statistics. Actual data collection is performed by ANALYZE
(either a manual command, or background auto-analyze). The collected values can be examined in the
pg_statistic_ext_data catalog.

ANALYZE computes extended statistics based on the same sample of table rows that it takes for computing
regular single-column statistics. Since the sample size is increased by increasing the statistics target for the
table or any of its columns (as described in the previous section), a larger statistics target will normally result
in more accurate extended statistics, as well as more time spent calculating them.

The following subsections describe the kinds of extended statistics that are currently supported.

Functional Dependencies

The simplest kind of extended statistics tracks functional dependencies, a concept used in definitions of
database normal forms. We say that column b is functionally dependent on column a if knowledge of the
value of a is sufficient to determine the value of b, that is there are no two rows having the same value of a
but different values of b. In a fully normalized database, functional dependencies should exist only on
primary keys and superkeys. However, in practice many data sets are not fully normalized for various
reasons; intentional denormalization for performance reasons is a common example. Even in a fully
normalized database, there may be partial correlation between some columns, which can be expressed as
partial functional dependency.

The existence of functional dependencies directly affects the accuracy of estimates in certain queries. If a
query contains conditions on both the independent and the dependent column(s), the conditions on the
dependent columns do not further reduce the result size; but without knowledge of the functional
dependency, the query planner will assume that the conditions are independent, resulting in
underestimating the result size.

To inform the planner about functional dependencies, ANALYZE can collect measurements of cross-column
dependency. Assessing the degree of dependency between all sets of columns would be prohibitively
expensive, so data collection is limited to those groups of columns appearing together in a statistics object
defined with the dependencies option. It is advisable to create dependencies statistics only for column
groups that are strongly correlated, to avoid unnecessary overhead in both ANALYZE and later query
planning.

Here is an example of collecting functional-dependency statistics:

212

https://www.postgresql.org/docs/15/runtime-config-query.html#GUC-DEFAULT-STATISTICS-TARGET
https://www.postgresql.org/docs/15/planner-stats-details.html
https://www.postgresql.org/docs/15/sql-createstatistics.html
https://www.postgresql.org/docs/15/catalog-pg-statistic-ext-data.html

CREATE STATISTICS stts (dependencies) ON city, zip FROM zipcodes;

ANALYZE zipcodes;

SELECT stxname, stxkeys, stxddependencies
 FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid)
 WHERE stxname = 'stts';
 stxname | stxkeys | stxddependencies
---------+---------+--
 stts | 1 5 | {"1 => 5": 1.000000, "5 => 1": 0.423130}
(1 row)

Here it can be seen that column 1 (zip code) fully determines column 5 (city) so the coefficient is 1.0, while
city only determines zip code about 42% of the time, meaning that there are many cities (58%) that are
represented by more than a single ZIP code.

When computing the selectivity for a query involving functionally dependent columns, the planner adjusts
the per-condition selectivity estimates using the dependency coefficients so as not to produce an
underestimate.

Limitations of Functional Dependencies

Functional dependencies are currently only applied when considering simple equality conditions that
compare columns to constant values, and IN clauses with constant values. They are not used to improve
estimates for equality conditions comparing two columns or comparing a column to an expression, nor for
range clauses, LIKE or any other type of condition.

When estimating with functional dependencies, the planner assumes that conditions on the involved
columns are compatible and hence redundant. If they are incompatible, the correct estimate would be zero
rows, but that possibility is not considered. For example, given a query like

SELECT * FROM zipcodes WHERE city = 'San Francisco' AND zip = '94105';

the planner will disregard the city clause as not changing the selectivity, which is correct. However, it will
make the same assumption about

SELECT * FROM zipcodes WHERE city = 'San Francisco' AND zip = '90210';

even though there will really be zero rows satisfying this query. Functional dependency statistics do not
provide enough information to conclude that, however.

In many practical situations, this assumption is usually satisfied; for example, there might be a GUI in the
application that only allows selecting compatible city and ZIP code values to use in a query. But if that’s
not the case, functional dependencies may not be a viable option.

Multivariate N-Distinct Counts

Single-column statistics store the number of distinct values in each column. Estimates of the number of
distinct values when combining more than one column (for example, for GROUP BY a, b) are frequently
wrong when the planner only has single-column statistical data, causing it to select bad plans.

To improve such estimates, ANALYZE can collect n-distinct statistics for groups of columns. As before, it’s

213

impractical to do this for every possible column grouping, so data is collected only for those groups of
columns appearing together in a statistics object defined with the ndistinct option. Data will be collected
for each possible combination of two or more columns from the set of listed columns.

Continuing the previous example, the n-distinct counts in a table of ZIP codes might look like the following:

CREATE STATISTICS stts2 (ndistinct) ON city, state, zip FROM zipcodes;

ANALYZE zipcodes;

SELECT stxkeys AS k, stxdndistinct AS nd
 FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid)
 WHERE stxname = 'stts2';
-[RECORD 1]--
k | 1 2 5
nd | {"1, 2": 33178, "1, 5": 33178, "2, 5": 27435, "1, 2, 5": 33178}
(1 row)

This indicates that there are three combinations of columns that have 33178 distinct values: ZIP code and
state; ZIP code and city; and ZIP code, city and state (the fact that they are all equal is expected given that
ZIP code alone is unique in this table). On the other hand, the combination of city and state has only 27435
distinct values.

It’s advisable to create ndistinct statistics objects only on combinations of columns that are actually used
for grouping, and for which misestimation of the number of groups is resulting in bad plans. Otherwise, the
ANALYZE cycles are just wasted.

Multivariate MCV Lists

Another type of statistic stored for each column are most-common value lists. This allows very accurate
estimates for individual columns, but may result in significant misestimates for queries with conditions on
multiple columns.

To improve such estimates, ANALYZE can collect MCV lists on combinations of columns. Similarly to
functional dependencies and n-distinct coefficients, it’s impractical to do this for every possible column
grouping. Even more so in this case, as the MCV list (unlike functional dependencies and n-distinct
coefficients) does store the common column values. So data is collected only for those groups of columns
appearing together in a statistics object defined with the mcv option.

Continuing the previous example, the MCV list for a table of ZIP codes might look like the following (unlike
for simpler types of statistics, a function is required for inspection of MCV contents):

CREATE STATISTICS stts3 (mcv) ON city, state FROM zipcodes;

ANALYZE zipcodes;

SELECT m.* FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid),
 pg_mcv_list_items(stxdmcv) m WHERE stxname = 'stts3';

 index | values | nulls | frequency | base_frequency
-------+------------------------+-------+-----------+----------------

214

 0 | {Washington, DC} | {f,f} | 0.003467 | 2.7e-05
 1 | {Apo, AE} | {f,f} | 0.003067 | 1.9e-05
 2 | {Houston, TX} | {f,f} | 0.002167 | 0.000133
 3 | {El Paso, TX} | {f,f} | 0.002 | 0.000113
 4 | {New York, NY} | {f,f} | 0.001967 | 0.000114
 5 | {Atlanta, GA} | {f,f} | 0.001633 | 3.3e-05
 6 | {Sacramento, CA} | {f,f} | 0.001433 | 7.8e-05
 7 | {Miami, FL} | {f,f} | 0.0014 | 6e-05
 8 | {Dallas, TX} | {f,f} | 0.001367 | 8.8e-05
 9 | {Chicago, IL} | {f,f} | 0.001333 | 5.1e-05
 ...
(99 rows)

This indicates that the most common combination of city and state is Washington in DC, with actual
frequency (in the sample) about 0.35%. The base frequency of the combination (as computed from the
simple per-column frequencies) is only 0.0027%, resulting in two orders of magnitude under-estimates.

It’s advisable to create MCV statistics objects only on combinations of columns that are actually used in
conditions together, and for which misestimation of the number of groups is resulting in bad plans.
Otherwise, the ANALYZE and planning cycles are just wasted.

Controlling the Planner with Explicit JOIN Clauses

It is possible to control the query planner to some extent by using the explicit JOIN syntax. To see why this
matters, we first need some background.

In a simple join query, such as:

SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;

the planner is free to join the given tables in any order. For example, it could generate a query plan that joins
A to B, using the WHERE condition a.id = b.id, and then joins C to this joined table, using the other WHERE
condition. Or it could join B to C and then join A to that result. Or it could join A to C and then join them with
B — but that would be inefficient, since the full Cartesian product of A and C would have to be formed, there
being no applicable condition in the WHERE clause to allow optimization of the join. (All joins in the IvorySQL
executor happen between two input tables, so it’s necessary to build up the result in one or another of
these fashions.) The important point is that these different join possibilities give semantically equivalent
results but might have hugely different execution costs. Therefore, the planner will explore all of them to try
to find the most efficient query plan.

When a query only involves two or three tables, there aren’t many join orders to worry about. But the
number of possible join orders grows exponentially as the number of tables expands. Beyond ten or so input
tables it’s no longer practical to do an exhaustive search of all the possibilities, and even for six or seven
tables planning might take an annoyingly long time. When there are too many input tables, the IvorySQL
planner will switch from exhaustive search to a genetic probabilistic search through a limited number of
possibilities. (The switch-over threshold is set by the geqo_threshold run-time parameter.) The genetic
search takes less time, but it won’t necessarily find the best possible plan.

When the query involves outer joins, the planner has less freedom than it does for plain (inner) joins. For
example, consider:

SELECT * FROM a LEFT JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

215

https://www.postgresql.org/docs/15/runtime-config-query.html#GUC-GEQO-THRESHOLD

Although this query’s restrictions are superficially similar to the previous example, the semantics are
different because a row must be emitted for each row of A that has no matching row in the join of B and C.
Therefore the planner has no choice of join order here: it must join B to C and then join A to that result.
Accordingly, this query takes less time to plan than the previous query. In other cases, the planner might be
able to determine that more than one join order is safe. For example, given:

SELECT * FROM a LEFT JOIN b ON (a.bid = b.id) LEFT JOIN c ON (a.cid = c.id);

it is valid to join A to either B or C first. Currently, only FULL JOIN completely constrains the join order. Most
practical cases involving LEFT JOIN or RIGHT JOIN can be rearranged to some extent.

Explicit inner join syntax (INNER JOIN, CROSS JOIN, or unadorned JOIN) is semantically the same as listing the
input relations in FROM, so it does not constrain the join order.

Even though most kinds of JOIN don’t completely constrain the join order, it is possible to instruct the
IvorySQL query planner to treat all JOIN clauses as constraining the join order anyway. For example, these
three queries are logically equivalent:

SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a CROSS JOIN b CROSS JOIN c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

But if we tell the planner to honor the JOIN order, the second and third take less time to plan than the first.
This effect is not worth worrying about for only three tables, but it can be a lifesaver with many tables.

To force the planner to follow the join order laid out by explicit `JOIN`s, set the join_collapse_limit run-time
parameter to 1. (Other possible values are discussed below.)

You do not need to constrain the join order completely in order to cut search time, because it’s OK to use
JOIN operators within items of a plain FROM list. For example, consider:

SELECT * FROM a CROSS JOIN b, c, d, e WHERE ...;

With join_collapse_limit = 1, this forces the planner to join A to B before joining them to other tables, but
doesn’t constrain its choices otherwise. In this example, the number of possible join orders is reduced by a
factor of 5.

Constraining the planner’s search in this way is a useful technique both for reducing planning time and for
directing the planner to a good query plan. If the planner chooses a bad join order by default, you can force
it to choose a better order via JOIN syntax — assuming that you know of a better order, that is.
Experimentation is recommended.

A closely related issue that affects planning time is collapsing of subqueries into their parent query. For
example, consider:

SELECT *
FROM x, y,
 (SELECT * FROM a, b, c WHERE something) AS ss
WHERE somethingelse;

This situation might arise from use of a view that contains a join; the view’s SELECT rule will be inserted in
place of the view reference, yielding a query much like the above. Normally, the planner will try to collapse

216

https://www.postgresql.org/docs/15/runtime-config-query.html#GUC-JOIN-COLLAPSE-LIMIT

the subquery into the parent, yielding:

SELECT * FROM x, y, a, b, c WHERE something AND somethingelse;

This usually results in a better plan than planning the subquery separately. (For example, the outer WHERE
conditions might be such that joining X to A first eliminates many rows of A, thus avoiding the need to form
the full logical output of the subquery.) But at the same time, we have increased the planning time; here, we
have a five-way join problem replacing two separate three-way join problems. Because of the exponential
growth of the number of possibilities, this makes a big difference. The planner tries to avoid getting stuck in
huge join search problems by not collapsing a subquery if more than from_collapse_limit FROM items
would result in the parent query. You can trade off planning time against quality of plan by adjusting this
run-time parameter up or down.

from_collapse_limit and join_collapse_limit are similarly named because they do almost the same thing:
one controls when the planner will “flatten out” subqueries, and the other controls when it will flatten out
explicit joins. Typically you would either set join_collapse_limit equal to from_collapse_limit (so that
explicit joins and subqueries act similarly) or set join_collapse_limit to 1 (if you want to control join order
with explicit joins). But you might set them differently if you are trying to fine-tune the trade-off between
planning time and run time.

Populating a Database

One might need to insert a large amount of data when first populating a database. This section contains
some suggestions on how to make this process as efficient as possible.

Disable Autocommit

When using multiple INSERT`s, turn off autocommit and just do one commit at the end. (In plain
SQL, this means issuing `BEGIN at the start and COMMIT at the end. Some client libraries might do this
behind your back, in which case you need to make sure the library does it when you want it done.) If you
allow each insertion to be committed separately, IvorySQL is doing a lot of work for each row that is added.
An additional benefit of doing all insertions in one transaction is that if the insertion of one row were to fail
then the insertion of all rows inserted up to that point would be rolled back, so you won’t be stuck with
partially loaded data.

Use COPY

Use COPY to load all the rows in one command, instead of using a series of INSERT commands. The COPY
command is optimized for loading large numbers of rows; it is less flexible than INSERT, but incurs
significantly less overhead for large data loads. Since COPY is a single command, there is no need to disable
autocommit if you use this method to populate a table.

If you cannot use COPY, it might help to use PREPARE to create a prepared INSERT statement, and then use
EXECUTE as many times as required. This avoids some of the overhead of repeatedly parsing and planning
INSERT. Different interfaces provide this facility in different ways; look for “prepared statements” in the
interface documentation.

Note that loading a large number of rows using COPY is almost always faster than using INSERT, even if
PREPARE is used and multiple insertions are batched into a single transaction.

COPY is fastest when used within the same transaction as an earlier CREATE TABLE or TRUNCATE command. In
such cases no WAL needs to be written, because in case of an error, the files containing the newly loaded
data will be removed anyway. However, this consideration only applies when wal_level is minimal as all
commands must write WAL otherwise.

Remove Indexes

If you are loading a freshly created table, the fastest method is to create the table, bulk load the table’s
data using COPY, then create any indexes needed for the table. Creating an index on pre-existing data is
quicker than updating it incrementally as each row is loaded.

217

https://www.postgresql.org/docs/15/runtime-config-query.html#GUC-FROM-COLLAPSE-LIMIT
https://www.postgresql.org/docs/15/runtime-config-query.html#GUC-JOIN-COLLAPSE-LIMIT
https://www.postgresql.org/docs/15/sql-copy.html
https://www.postgresql.org/docs/15/sql-prepare.html
https://www.postgresql.org/docs/15/runtime-config-wal.html#GUC-WAL-LEVEL

If you are adding large amounts of data to an existing table, it might be a win to drop the indexes, load the
table, and then recreate the indexes. Of course, the database performance for other users might suffer
during the time the indexes are missing. One should also think twice before dropping a unique index, since
the error checking afforded by the unique constraint will be lost while the index is missing.

Remove Foreign Key Constraints

Just as with indexes, a foreign key constraint can be checked “in bulk” more efficiently than row-by-row.
So it might be useful to drop foreign key constraints, load data, and re-create the constraints. Again, there is
a trade-off between data load speed and loss of error checking while the constraint is missing.

What’s more, when you load data into a table with existing foreign key constraints, each new row requires
an entry in the server’s list of pending trigger events (since it is the firing of a trigger that checks the row’s
foreign key constraint). Loading many millions of rows can cause the trigger event queue to overflow
available memory, leading to intolerable swapping or even outright failure of the command. Therefore it
may be necessary, not just desirable, to drop and re-apply foreign keys when loading large amounts of data.
If temporarily removing the constraint isn’t accept.

Increase maintenance_work_mem

Temporarily increasing the maintenance_work_mem configuration variable when loading large amounts of
data can lead to improved performance. This will help to speed up CREATE INDEX commands and ALTER
TABLE ADD FOREIGN KEY commands. It won’t do much for COPY itself, so this advice is only useful when you
are using one or both of the above techniques.

Increase max_wal_size

Temporarily increasing the max_wal_size configuration variable can also make large data loads faster. This
is because loading a large amount of data into IvorySQL will cause checkpoints to occur more often than the
normal checkpoint frequency (specified by the checkpoint_timeout configuration variable). Whenever a
checkpoint occurs, all dirty pages must be flushed to disk. By increasing max_wal_size temporarily during
bulk data loads, the number of checkpoints that are required can be reduced.

Disable WAL Archival and Streaming Replication

When loading large amounts of data into an installation that uses WAL archiving or streaming replication, it
might be faster to take a new base backup after the load has completed than to process a large amount of
incremental WAL data. To prevent incremental WAL logging while loading, disable archiving and streaming
replication, by setting wal_level to minimal, archive_mode to off, and max_wal_senders to zero. But note
that changing these settings requires a server restart, and makes any base backups taken before unavailable
for archive recovery and standby server, which may lead to data loss.

Aside from avoiding the time for the archiver or WAL sender to process the WAL data, doing this will actually
make certain commands faster, because they do not to write WAL at all if wal_level is minimal and the
current subtransaction (or top-level transaction) created or truncated the table or index they change. (They
can guarantee crash safety more cheaply by doing an fsync at the end than by writing WAL.)

Run ANALYZE Afterwards

Whenever you have significantly altered the distribution of data within a table, running ANALYZE is strongly
recommended. This includes bulk loading large amounts of data into the table. Running ANALYZE (or VACUUM
ANALYZE) ensures that the planner has up-to-date statistics about the table. With no statistics or obsolete
statistics, the planner might make poor decisions during query planning, leading to poor performance on
any tables with inaccurate or nonexistent statistics. Note that if the autovacuum daemon is enabled, it might
run ANALYZE automatically.

Some Notes about pg_dump

Dump scripts generated by pg_dump automatically apply several, but not all, of the above guidelines. To
restore a pg_dump dump as quickly as possible, you need to do a few extra things manually. (Note that
these points apply while restoring a dump, not while creating it. The same points apply whether loading a
text dump with psql or using pg_restore to load from a pg_dump archive file.)

218

https://www.postgresql.org/docs/15/runtime-config-resource.html#GUC-MAINTENANCE-WORK-MEM
https://www.postgresql.org/docs/15/runtime-config-wal.html#GUC-MAX-WAL-SIZE
https://www.postgresql.org/docs/15/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.postgresql.org/docs/15/runtime-config-wal.html#GUC-ARCHIVE-MODE
https://www.postgresql.org/docs/15/runtime-config-replication.html#GUC-MAX-WAL-SENDERS
https://www.postgresql.org/docs/15/sql-analyze.html

By default, pg_dump uses COPY, and when it is generating a complete schema-and-data dump, it is careful to
load data before creating indexes and foreign keys. So in this case several guidelines are handled
automatically. What is left for you to do is to:

• Set appropriate (i.e., larger than normal) values for maintenance_work_mem and max_wal_size.
• If using WAL archiving or streaming replication, consider disabling them during the restore. To do that,

set archive_mode to off, wal_level to minimal, and max_wal_senders to zero before loading the dump.
Afterwards, set them back to the right values and take a fresh base backup.

• Experiment with the parallel dump and restore modes of both pg_dump and pg_restore and find the
optimal number of concurrent jobs to use. Dumping and restoring in parallel by means of the -j option
should give you a significantly higher performance over the serial mode.

• Consider whether the whole dump should be restored as a single transaction. To do that, pass the -1 or
--single-transaction command-line option to psql or pg_restore. When using this mode, even the
smallest of errors will rollback the entire restore, possibly discarding many hours of processing.
Depending on how interrelated the data is, that might seem preferable to manual cleanup, or not. COPY
commands will run fastest if you use a single transaction and have WAL archiving turned off.

• If multiple CPUs are available in the database server, consider using pg_restore’s --jobs option. This
allows concurrent data loading and index creation.

• Run ANALYZE afterwards.

Non-Durable Settings

Durability is a database feature that guarantees the recording of committed transactions even if the server
crashes or loses power. However, durability adds significant database overhead, so if your site does not
require such a guarantee, IvorySQL can be configured to run much faster. The following are configuration
changes you can make to improve performance in such cases. Except as noted below, durability is still
guaranteed in case of a crash of the database software; only an abrupt operating system crash creates a risk
of data loss or corruption when these settings are used.

• Place the database cluster’s data directory in a memory-backed file system (i.e., RAM disk). This
eliminates all database disk I/O, but limits data storage to the amount of available memory (and
perhaps swap).

• Turn off fsync; there is no need to flush data to disk.
• Turn off synchronous_commit; there might be no need to force WAL writes to disk on every commit. This

setting does risk transaction loss (though not data corruption) in case of a crash of the database.
• Turn off full_page_writes; there is no need to guard against partial page writes.
• Increase max_wal_size and checkpoint_timeout; this reduces the frequency of checkpoints, but

increases the storage requirements of /pg_wal.
• Create unlogged tables to avoid WAL writes, though it makes the tables non-crash-safe.

Migration
Migration overview
The so-called database migration is any form of data movement between this database and another
database, and the databases at both ends may be PostgreSql, mySQL, oracle, Sql Server, Highgo DB, etc.
The migration process is a challenging, complex process that requires a thorough understanding of how
databases work and their characteristics. If the application has been deployed to the production
environment and is in a normal operating state, a smooth application migration is required after database
migration to maintain uninterrupted business operation and no data loss.

After migration, databases and systems should meet the following requirements:

• The migrated database system should fully host the data of the original database system. Avoid data
loss during migration that causes incomplete data to the new database system.

• The migrated database system should fully adapt to the functions of the original database. Avoid the

219

https://www.postgresql.org/docs/15/runtime-config-wal.html#GUC-FSYNC
https://www.postgresql.org/docs/15/runtime-config-wal.html#GUC-SYNCHRONOUS-COMMIT
https://www.postgresql.org/docs/15/runtime-config-wal.html#GUC-FULL-PAGE-WRITES
https://www.postgresql.org/docs/15/runtime-config-wal.html#GUC-MAX-WAL-SIZE
https://www.postgresql.org/docs/15/runtime-config-wal.html#GUC-CHECKPOINT-TIMEOUT
https://www.postgresql.org/docs/15/sql-createtable.html#SQL-CREATETABLE-UNLOGGED

inability to run or throw errors of the entire business system due to data types, syntax, and functions that
are not supported after migration, and there is no alternative.

• The migrated database should be adapted to the upstream and downstream of the entire business
system to ensure the stable and reliable operation of the entire business system.

• The comprehensive performance of the migrated database cannot be weaker than that of the original
database, providing performance guarantee for the entire business system.

Migration tool——Ora2Pg
Ora2Pg is a free tool for migrating Oracle databases to an IvorySQL-compatible schema. It connects to your
Oracle database, automatically scans and extracts its structure or data, and then generates SQL scripts that
can be loaded into an IvorySQL database. Ora2Pg can migrate from a reverse-engineered Oracle database to
a large enterprise database, or simply copy some Oracle data into an IvorySQL database. It is very easy to
use and does not require any Oracle database knowledge without providing the parameters required to
connect to Oracle Database.

Ora2Pg consists of a Perl script (ora2pg) and a Perl module (Ora2Pg.pm), the only thing that needs to be
done is to modify its configuration file, ora2pg.conf, set the DSN to connect to the Oracle database, and an
optional SCHEMA name. ONCE THAT’S DONE, YOU ONLY NEED TO SET THE EXPORTED TYPE: TABLE
(INCLUDING CONSTRAINTS AND INDEXES), VIEW, MVIEW, TABLESPACE, SEQUENCE, INDEXES, TRIGGER,
GRANT, FUNCTION, PROCEDURE, PACKAGE, PARTITION, TYPE, INSERT OR COPY, FDW, QUERY, KETTLE, AND
SYNONYM.

By default, Ora2Pg exports an SQL file, which can be executed through the IvorySQL client tool psql. When
performing data migration, you can set the DSN of the target database in the configuration file to import
data directly from Oracle into the IvorySQL database.

Object Whether ora2pg is supported
view yes
trigger yes，In some cases, you need to modify the script

manually
sequence yes
function yes
procedure yes，In some cases, you need to modify the script

manually
type yes，In some cases, you need to modify the script

manually
materialized view yes，In some cases, you need to modify the script

manually

Migrate Oracle Database to IvorySQL

Environment preparation

linux Oracle Version IvorySQL Version
Centos 7.X 11.2.0.3.0 2.1

Environment-dependent installation

Install Perl

[root@localhost /]# yum install -y perl perl-ExtUtils-CBuilder perl-ExtUtils-MakeMaker
[root@localhost /]# perl -v

220

https://link.zhihu.com/?target=http%3A//ora2pg.pm/

This is perl 5, version 16, subversion 3 (v5.16.3) built for x86_64-linux-thread-multi
(with 44 registered patches, see perl -V for more detail)

Copyright 1987-2012, Larry Wall

Perl may be copied only under the terms of either the Artistic License or the
GNU General Public License, which may be found in the Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should be found on
this system using "man perl" or "perldoc perl". If you have access to the
Internet, point your browser at http://www.perl.org/, the Perl Home Page.

Install the DBI module

DBI，Database Independent Interface，is the interface of the Perl language to connect to the database

Download address: https://cpan.metacpan.org/authors/id/T/TI/TIMB/DBI-1.643.tar.gz

[root@localhost oracle2postgresql]# tar zxvf DBI-1.643.tar.gz
[root@localhost oracle2postgresql]# cd DBI-1.643/
[root@localhost DBI-1.643]# perl Makefile.PL
[root@localhost DBI-1.643]# make
[root@localhost DBI-1.643]# make install

Install DBD-Oracle

Download address：https://sourceforge.net/projects/ora2pg/

Set environment variables; Load environment variables; Because ORACLE must be defined_ HOME
environment variable; This example configures environment variables under the ivorysql user

export LD_LIBRARY_PATH=/usr/lib/oracle/18.3/client64/lib:$LD_LIBRARY_PATH
export ORACLE_HOME=/usr/lib/oracle/18.3/client64
tar -zxvf DBD-Oracle-1.76.tar.gz # source /home/postgres/.bashrc
cd DBD-Oracle-1.76
perl Makefile.PL
make
make install

221

https://link.zhihu.com/?target=https%3A//cpan.metacpan.org/authors/id/T/TI/TIMB/DBI-1.643.tar.gz

Install DBD-PG (optional)

Download address：https://metacpan.org/release/DBD-Pg/

Set environment variables：

export POSTGRES_HOME=/opt/ivorysql/2.1
tar -zxvf DBD-Pg-3.80.tar.gz
source /home/ivorysql/.bashrc
cd DBD-Pg-3.8.0
perl Makefile.PL
make
make install

Install Ora2pg

Download address：https://sourceforge.net/projects/ora2pg/

[root@Test01 ~]# tar -xjf ora2pg-20.0.tar.bz2
[root@Test01 ~]# cd ora2pg-xx/
[root@Test01 ~]# perl Makefile.PL PREFIX=<your_install_dir>
[root@Test01 ora2pg-18.2]# make && make install

Installed in/usr/local/bin/directory by default Check the software environment:

[root@Test01 ~]# vi check.pl
#!/usr/bin/perl
use strict;
use ExtUtils::Installed;
my $inst= ExtUtils::Installed->new();
my @modules = $inst->modules();
foreach(@modules)
{
 my $ver = $inst->version($_) || "???";
 printf("%-12s -- %s\n", $_, $ver);

}
exit;
[root@test01 bin]# perl check.pl
DBD::Oracle -- 1.76
DBD::Pg -- 3.8.0
DBI -- 1.642
Ora2Pg -- 20.0
Perl -- 5.16.3

222

Set environment variables

export PERL5LIB=<your_install_dir>
#export PERL5LIB=/usr/local/bin/

Source side preparation

Update oracle statistics to improve performance

BEGIN
DBMS_STATS.GATHER_SCHEMA_STATS('SH');
DBMS_STATS.GATHER_SCHEMA_STATS('SCOTT');
DBMS_STATS.GATHER_SCHEMA_STATS('HR');
DBMS_STATS.GATHER_DATABASE_STATS ;
DBMS_STATS.GATHER_DICTIONARY_STATS;
END;/

Query the source end object pair type

SYS@PROD1>set pagesize 200
SYS@PROD1>select distinct OBJECT_TYPE from dba_objects where OWNER in
('SH','SCOTT','HR') ;
OBJECT_TYPE

INDEX PARTITION
TABLE PARTITION
SEQUENCE
PROCEDURE
LOB X
TRIGGER
DIMENSION X
MATERIALIZED VIEW
TABLE
INDEX
VIEW
11 rows selected.

Ora2pg export table structure

Configure ora2pg.conf

By default, Ora2Pg will find the/etc/ora2pg/ora2pg.conf configuration file. If the file exists, you only need to
execute:/usr/local/bin/ora2pg

cat /etc/ora2pg/ora2pg.conf.dist | grep -v ^# |grep -v ^$ >ora2pg.conf

223

vi ora2pg.conf
[root@test01 ora2pg]# cat ora2pg.conf
ORACLE_HOME /usr/lib/oracle/18.3/client64
ORACLE_DSN dbi:Oracle:host=10.85.10.6 ;sid=PROD1;port=1521
ORACLE_USER system
ORACLE_PWD oracle
SCHEMA SH
EXPORT_SCHEMA 1
SKIP fkeys ukeys checks
TYPE
TABLE,VIEW,GRANT,SEQUENCE,TABLESPACE,PROCEDURE,TRIGGER,FUNCTION,PACKAGE,PARTITION,TYPE
,MVIEW,QUERY,DBLINK,SYNONYM,DIRECTORY,TEST,TEST_VIEW
NLS_LANG AMERICAN_AMERICA.UTF8
OUTPUT sh.sql

1. Only one type of export can be executed at the same time, so the TYPE
instruction must be unique. If you have more than one, only the last one will be
found in the file. But I can export multiple types at the same time.

2. Please note that you can link multiple exports by providing a comma-separated
list of export types to the TYPE directive, but in this case, you cannot use COPY
or INSERT with other export types.

3. Some export types cannot or should not be directly loaded into the IvorySQL
database, and still require little manual editing. This is the case for GRANT,
TABLESPACE, TRIGGER, FUNCTION, PROCEDURE, TYPE, QUERY and PACKAGE
export types, especially if you have PLSQL code or Oracle specific SQL.

4. For TABLESPACE, you must ensure that the file path exists on the system. For
SYNONYM, you can ensure that the owner and schema of the object correspond
to the new PostgreSQL database design.

5. It is recommended to export the table structure one type at a time to avoid
other errors affecting each other.

Test connection

After setting the Oracle database DSN, you can execute ora2pg to check whether it is valid：

[root@test01 ora2pg]# ora2pg -t SHOW_VERSION -c config/ora2pg.conf

WARNING: target IvorySQL version must be set in PG_VERSION configuration directive.
Using default: 11

Oracle Database 11g Enterprise Edition Release 11.2.0.3.0

Migration cost assessment

It is not easy to estimate the cost of the migration process from Oracle to PostgreSQL. In order to obtain a
good evaluation of the migration cost, Ora2Pg will check all database objects, all functions and stored

224

procedures to detect whether there are still some objects and PL/SQL code that cannot be automatically
converted by Ora2Pg. Ora2Pg has a content analysis mode, which checks the Oracle database to generate a
text report about the content contained in the Oracle database and the content that cannot be exported.

[root@test01 ora2pg]# ora2pg -t SHOW_REPORT --estimate_cost -c ora2pg.conf
WARNING: target IvorySQL version must be set in PG_VERSION configuration directive.
Using default: 11
[========================>] 11/11 tables (100.0%) end of scanning.
[========================>] 11/11 objects types (100.0%) end of objects auditing.

Ora2Pg v20.0 - Database Migration Report

Version Oracle Database 11g Enterprise Edition Release 11.2.0.3.0
Schema SH
Size 287.25 MB

Object Number Invalid Estimated cost Comments Details

DATABASE LINK 0 0 0 Database links will be exported as SQL/MED
IvorySQL's Foreign Data Wrapper (FDW) extensions using oracle_fdw.
DIMENSION 5 0 0
GLOBAL TEMPORARY TABLE 0 0 0 Global temporary table are not
supported by PostgreSQL and will not be exported. You will have to rewrite some
application code to match the PostgreSQL temporary table behavior.
INDEX 20 0 3.4 14 index(es) are concerned by the export, others are
automatically generated and will do so on PostgreSQL. Bitmap will be exported as
btree_gin index(es) and hash index(es) will be exported as b-tree index(es) if any.
Domain index are exported as b-tree but commented to be edited to mainly use FTS.
Cluster, bitmap join and IOT indexes will not be exported at all. Reverse indexes are
not exported too, you may use a trigram-based index (see pg_trgm) or a reverse()
function based index and search. Use 'varchar_pattern_ops', 'text_pattern_ops' or
'bpchar_pattern_ops' operators in your indexes to improve search with the LIKE
operator respectively into varchar, text or char columns. 11 bitmap index(es). 1
domain index(es). 2 b-tree index(es).

INDEX PARTITION 196 0 0 Only local indexes partition are exported,
they are build on the column used for the partitioning.

JOB 0 0 0 Job are not exported. You may set external cron job
with them.

MATERIALIZED VIEW 2 0 6 All materialized view will be exported
as snapshot materialized views, they are only updated when fully refreshed.

SYNONYM 0 0 0 SYNONYMs will be exported as views. SYNONYMs do not
exists with PostgreSQL but a common workaround is to use views or set the PostgreSQL
search_path in your session to access object outside the current schema.

225

TABLE 11 0 1.1 1 external table(s) will be exported as standard
table. See EXTERNAL_TO_FDW configuration directive to export as file_fdw foreign
tables or use COPY in your code if you just want to load data from external files.
Total number of rows: 1063384. Top 10 of tables sorted by number of rows:. sales has
918843 rows. costs has 82112 rows. customers has 55500 rows.
supplementary_demographics has 4500 rows. times has 1826 rows. promotions has 503
rows. products has 72 rows. countries has 23 rows. channels has 5 rows.
sales_transactions_ext has 0 rows. Top 10 of largest tables:.

TABLE PARTITION 56 0 5.6 Partitions are exported using table
inheritance and check constraint. Hash and Key partitions are not supported by
PostgreSQL and will not be exported. 56 RANGE partitions..

VIEW 1 0 1 Views are fully supported but can use specific
functions.

Total 291 0 17.10 17.10 cost migration units means approximatively 1
man-day(s). The migration unit was set to 5 minute(s)
--
Migration level : A-1

Migration levels:

 A - Migration that might be run automatically

 B - Migration with code rewrite and a human-days cost up to 5 days

 C - Migration with code rewrite and a human-days cost above 5 days

Technical levels:

 1 = trivial: no stored functions and no triggers

 2 = easy: no stored functions but with triggers, no manual rewriting

 3 = simple: stored functions and/or triggers, no manual rewriting

 4 = manual: no stored functions but with triggers or views with code rewriting

 5 = difficult: stored functions and/or triggers with code rewriting

226

Export SH table structure

[root@test01 ora2pg]# ora2pg -c ora2pg.conf
WARNING: target IvorySQL version must be set in PG_VERSION configuration directive.
Using default: 11
[========================>] 11/11 tables (100.0%) end of scanning.

[========================>] 12/12 tables (100.0%) end of table export.

[========================>] 1/1 views (100.0%) end of output.

[========================>] 0/0 sequences (100.0%) end of output.

[========================>] 0/0 procedures (100.0%) end of procedures export.

[========================>] 0/0 triggers (100.0%) end of output.

[========================>] 0/0 functions (100.0%) end of functions export.

[========================>] 0/0 packages (100.0%) end of output.

[========================>] 56/56 partitions (100.0%) end of output.

[========================>] 0/0 types (100.0%) end of output.

[========================>] 2/2 materialized views (100.0%) end of output.
[========================>] 0/0 dblink (100.0%) end of output.

[========================>] 0/0 synonyms (100.0%) end of output.

[========================>] 2/2 directory (100.0%) end of output.

Fixing function calls in output files....

Export SH user data

Configure the type of ora2pg.conf as COPY or INSERT

[root@test01 ora2pg]# cp ora2pg.conf sh_data.conf

[root@test01 ora2pg]# vi sh_data.conf

ORACLE_HOME /usr/lib/oracle/18.3/client64

227

ORACLE_DSN dbi:Oracle:host=10.85.10.6 ;sid=PROD1;port=1521

ORACLE_USER system

ORACLE_PWD oracle

SCHEMA SH

EXPORT_SCHEMA 1

DISABLE_UNLOGGED 1

SKIP fkeys ukeys checks

TYPE COPY

NLS_LANG AMERICAN_AMERICA.UTF8

OUTPUT sh_data.sql

Export Data

[root@test01 ora2pg]# ora2pg -c sh_data.conf

WARNING: target PostgreSQL version must be set in PG_VERSION configuration directive.
Using default: 11

[========================>] 11/11 tables (100.0%) end of scanning.

[========================>] 5/5 rows (100.0%) Table CHANNELS (5 recs/sec)

[>] 5/1063384 total rows (0.0%) - (0 sec., avg: 5
recs/sec).

[>] 0/82112 rows (0.0%) Table COSTS_1995 (0 recs/sec)

[>] 5/1063384 total rows (0.0%) - (0 sec., avg: 5
recs/sec).

[>] 0/82112 rows (0.0%) Table COSTS_H1_1997 (0 recs/sec)

[>] 5/1063384 total rows (0.0%) - (0 sec., avg: 5
recs/sec).

228

[>] 0/82112 rows (0.0%) Table COSTS_1996 (0 recs/sec)

[>] 5/1063384 total rows (0.0%) - (0 sec., avg: 5
recs/sec).

……………………………………………………………

[========================>] 4500/4500 rows (100.0%) Table SUPPLEMENTARY_DEMOGRAPHICS
(4500 recs/sec)

[=======================>] 1061558/1063384 total rows (99.8%) - (45 sec., avg: 23590
recs/sec).

[========================>] 1826/1826 rows (100.0%) Table TIMES (1826 recs/sec)

[========================>] 1063384/1063384 total rows (100.0%) - (45 sec., avg: 23630
recs/sec).

[========================>] 1063384/1063384 rows (100.0%) on total estimated data (45
sec., avg: 23630 recs/sec)

Fixing function calls in output files...

To view the exported file:

[root@test01 ora2pg]# ls -lrt *.sql

-rw-r--r-- 1 root root 15716 Jul 2 21:21 TABLE_sh.sql

-rw-r--r-- 1 root root 858 Jul 2 21:21 VIEW_sh.sql

-rw-r--r-- 1 root root 2026 Jul 2 21:21 TABLESPACE_sh.sql

-rw-r--r-- 1 root root 345 Jul 2 21:21 SEQUENCE_sh.sql

-rw-r--r-- 1 root root 2382 Jul 2 21:21 GRANT_sh.sql

-rw-r--r-- 1 root root 344 Jul 2 21:21 TRIGGER_sh.sql

-rw-r--r-- 1 root root 346 Jul 2 21:21 PROCEDURE_sh.sql

-rw-r--r-- 1 root root 344 Jul 2 21:21 PACKAGE_sh.sql

229

-rw-r--r-- 1 root root 345 Jul 2 21:21 FUNCTION_sh.sql

-rw-r--r-- 1 root root 6771 Jul 2 21:21 PARTITION_sh.sql

-rw-r--r-- 1 root root 341 Jul 2 21:21 TYPE_sh.sql

-rw-r--r-- 1 root root 342 Jul 2 21:21 QUERY_sh.sql

-rw-r--r-- 1 root root 950 Jul 2 21:21 MVIEW_sh.sql

-rw-r--r-- 1 root root 344 Jul 2 21:21 SYNONYM_sh.sql

-rw-r--r-- 1 root root 926 Jul 2 21:21 DIRECTORY_sh.sql

-rw-r--r-- 1 root root 343 Jul 2 21:21 DBLINK_sh.sql

-rw-r--r-- 1 root root 55281235 Jul 2 17:11 sh_data.sql

Export HR and SCOTT user data in the same way.

Create orcl library in IvorySQL environment

Create ORCL database

[root@test01 ~]# su - ivorysql

Last login: Tue Jul 2 20:04:30 CST 2019 on pts/3

[postgres@test01 ~]$ createdb orcl

[postgres@test01 ~]$ psql

psql (11.2)

Type "help" for help.

ivorysql=# \l

 List of databases

 Name | Owner | Encoding | Collate | Ctype | Access privileges

230

-----------+----------+----------+------------+------------+-----------------------

 orcl | postgres | UTF8 | en_US.utf8 | en_US.utf8 |

 pgdb | postgres | UTF8 | en_US.utf8 | en_US.utf8 |

 postgres | postgres | UTF8 | en_US.utf8 | en_US.utf8 |

 template0 | postgres | UTF8 | en_US.utf8 | en_US.utf8 | =c/postgres +

 | | | | | postgres=CTc/postgres

 template1 | postgres | UTF8 | en_US.utf8 | en_US.utf8 | =c/postgres +

 | | | | | postgres=CTc/postgres

(5 rows)

ivorysql=#

Create SH, HR, SCOTT users:

[postgres@test01 ~]$ psql orcl

psql (11.2)

Type "help" for help.

orcl=#

orcl=# create user sh with password 'sh';

CREATE ROLE

Migration Portal

Import table structure

Because of the materialized view, in TABLE_ The sh.sql contains the index of the materialized view, which
will fail to create. You need to first create a table, then create a materialized view, and finally create an index.
Cancel the materialized view index and create it separately later:

CREATE INDEX fw_psc_s_mv_chan_bix ON fweek_pscat_sales_mv (channel_id);

231

CREATE INDEX fw_psc_s_mv_promo_bix ON fweek_pscat_sales_mv (promo_id);

CREATE INDEX fw_psc_s_mv_subcat_bix ON fweek_pscat_sales_mv (prod_subcategory);

CREATE INDEX fw_psc_s_mv_wd_bix ON fweek_pscat_sales_mv (week_ending_day);

CREATE TEXT SEARCH CONFIGURATION en (COPY = pg_catalog.english);
ALTER TEXT SEARCH CONFIGURATION en ALTER MAPPING FOR hword, hword_part, word WITH
unaccent, english_stem;

psql orcl -f tab.sql.sql

ALTER TABLE PARTITION sh.sales OWNER TO sh;
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
ALTER TABLE
ALTER TABLE
ALTER TABLE
………………………………

Authorize objects

cat psql orcl -f GRANT_sh.sql
CREATE USER SH WITH PASSWORD 'change_my_secret' LOGIN;
ALTER TABLE sh.fweek_pscat_sales_mv OWNER TO sh;
GRANT ALL ON sh.fweek_pscat_sales_mv TO sh;

Import materialized view structure

Materialized views require relevant query permissions, so import permissions. Please keep up with users
here

 [ivorysql@test01 ora2pg]$ psql orcl sh -f MVIEW_sh.sql
SELECT 0
SELECT 0
CREATE INDEX
CREATE INDEX
CREATE INDEX

232

CREATE INDEX

Import View

[ivorysql@test01 ora2pg]$ psql orcl -f VIEW_sh.sql
SET
SET
SET
CREATE VIEW

Import partition table

[ivorysql@test01 ora2pg]$ psql orcl -f PARTITION_sh.sql
SET
SET
SET
CREATE TABLE
CREATE TABLE
CREATE TABLE
CREATE TABLE
CREATE TABLE
CREATE TABLE
…………………………

Import data

[ivorysql@test01 ora2pg]$ psql orcl -f sh_data.sql
SET
COPY 0
SET
COPY 0
SET
COPY 0
SET
COPY 0
SET
COPY 0
SET
COPY 0
SET
COPY 0
SET

233

COPY 4500
SET
COPY 1826
COMMIT

Data validation
Source database and target side extract part of objects for comparison：

SYS@PROD1>select count(*) from sh.products;
 COUNT(*)

 72

orcl=# select count(*) from sh.products;
 count

 72
(1 row)

SYS@PROD1>select count(*) from sh.channels;

 COUNT(*)

 5

orcl=# select count(*) from sh.channels;
 count

 5

(1 row)

--

SYS@PROD1>select count(*) from sh.customers ;

 COUNT(*)

234

 55500
orcl=# select count(*) from sh.customers ;
 count

 55500
(1 row)

Generate migration template

When using, there are two options — project_ Base and — init_ Project indicates to ora2pg that he must
create a project template, which contains the work tree, configuration files and scripts for exporting all
objects from the Oracle database. Generate a generic configuration file. 1. Create script export_ Schema.sh
to automatically perform all exports. 2. Create script import_ All.sh to automatically perform all imports.
example：

mkdir -p /ora2pg/migration

[root@test01 ora2pg-20.0]# ora2pg --project_base /ora2pg/migration/ --init_project
test_project
Creating project test_project.
/ora2pg/migration//test_project/
 schema/
 dblinks/
 directories/
 functions/
 grants/
 mviews/
 packages/
 partitions/
 procedures/
 sequences/
 synonyms/
 tables/
 tablespaces/
 triggers/
 types/
 views/
 sources/
 functions/
 mviews/
 packages/
 partitions/
 procedures/

235

 triggers/
 types/
 views/
 data/
 config/
 reports/
Generating generic configuration file
Creating script export_schema.sh to automate all exports.
Creating script import_all.sh to automate all imports.

236

IvorySQL Ecosystem
PostGIS
Overview
IvorySQL is fully compatible with PostgreSQL, allowing for seamless integration with PostGIS.

Installation
Users can select the installation method for PostGIS that best suits their development environment from the
PostGIS installation page.

Source Code Installation

Apart from the installation methods provided by the PostGIS community, the IvorySQL community also
offers a source code installation method, with CentOS 7.9 (x86_64) as the environment for source code
installation.

 Please make sure that IvorySQL version 3.0 or newer is installed in the environment.

• Install dependencies

yum install -y gcc gcc-c++ libtiff libtiff-devel.x86_64 libcurl-devel.x86_64 libtool
libxml2-devel redhat-rpm-config clang llvm geos311 automake protobuf-c-devel

• Install SQLITE

$ wget https://www.sqlite.org/2022/sqlite-autoconf-3400000.tar.gz
$ tar -xvf sqlite-autoconf-3400000.tar.gz
$ cd sqlite-autoconf-3400000
$ sed -n '1i\#define SQLITE_ENABLE_COLUMN_METADATA 1' sqlite3.c
$./configure --prefix=/usr/local/sqlite
$ make && make install
$ rm usr/bin/sqlite3 && ln -s /usr/local/sqlite/bin/sqlite3 /usr/bin/sqlite3
$ sqlite3 -version
$ export PKG_CONFIG_PATH=/usr/local/sqlite/lib/pkgconfig:$PKG_CONFIG_PATH

• Install PROJ

$ wget https://download.osgeo.org/proj/proj-8.2.1.tar.gz
$ tar -xvf proj-8.2.1.tar.gz
$ cd proj-8.2.1
$./configure --prefix=/usr/local/proj-8.2.1
$ make && make install

• Install GDAL

237

https://postgis.net/documentation/getting_started/#installing-postgis

$ wget https://github.com/OSGeo/gdal/releases/download/v3.4.3/gdal-3.4.3.tar.gz
$ tar -xvf gdal-3.4.3.tar.gz
$ cd gdal-3.4.3
$ sh autogen.sh
$./configure --prefix=/usr/local/gdal-3.4.3 --with-proj=/usr/local/proj-8.2.1
$ make && make install

• Install GEOS

$ wget https://download.osgeo.org/geos/geos-3.9.2.tar.bz2
$ tar -xvf geos-3.9.2.tar.bz2
$ cd geos-3.9.2
$./configure --prefix=/usr/local/geos-3.9.2
$ make && make install

• Install Protobuf

$ wget https://plug-neomirror.rcac.purdue.edu/adelie/source/archive/protobuf-
3.20.1/protobuf-3.20.1.tar.gz
$ tar -xvf protobuf-3.20.1.tar.gz
$ cd protobuf-3.20.1
$ sh autogen.sh
$./configure --prefix=/usr/local/protobuf-3.20.1
$ make && make install
$ export PROTOBUF_HOME=/usr/local/protobuf-3.20.1
$ export PATH=$PROTOBUF_HOME/bin:$PATH
$ export PKG_CONFIG_PATH=$PROTOBUF_HOME/lib/pkgconfig:$PKG_CONFIG_PATH

• Install Protobuf-c

$ wget --no-check-certificate https://sources.buildroot.net/protobuf-c/protobuf-c-
1.4.1.tar.gz
$ tar -xvf protobuf-c-1.4.1.tar.gz
$ cd protobuf-c-1.4.1
$./configure --prefix=/usr/local/protobuf-c-1.4.1
$ make && make install
$ export PROTOBUFC_HOME=/usr/local/protobuf-c-1.4.1
$ export PATH=$PROTOBUF_HOME/bin:$PROTOBUFC_HOME/bin:$PATH
$ export PKG_CONFIG_PATH=$PROTOBUFC_HOME/lib:$PKG_CONFIG_PATH

• Install PostGIS

238

$ wget https://download.osgeo.org/postgis/source/postgis-3.4.0.tar.gz
$ tar -xvf postgis-3.4.0.tar.gz
$ cd postgis-3.4.0
$ sh autogen.sh
$./configure --with-geosconfig=/usr/local/geos-3.9.2/bin/geos-config --with
-projdir=/usr/local/proj-8.2.1 --with-gdalconfig=/usr/local/gdal-3.4.3/bin/gdal-config
--with-protobufdir=/usr/local/protobuf-c-1.4.1 --with
-pgconfig=/usr/local/ivorysql/ivorysql-3/bin/pg_config
$ make && make install

If configure reports PGXS error, please change --with-pgconfig parameter value and
confirm the parameter value based on the installation path of IvorySQL in the
environment.

Create the extension and verify the PostGIS version.
Connect to the database with psql and execute the following command:

ivorysql=# CREATE extension postgis;
CREATE EXTENSION

ivorysql=# SELECT * FROM pg_available_extensions WHERE name = 'postgis';
 name | default_version | installed_version | comment
---------+-----------------+-------------------+
--
 postgis | 3.4.0 | 3.4.0 | PostGIS geometry and geography
spatial types and functions
(1 row)

Using
To learn more about using PostGIS, please consult the official documentation for PostGIS 3.4.

pgvector
Overview
The vector database is an important component of Generative Artificial Intelligence (GenAI). As a significant
extension of PostgreSQL, pgvector not only supports vector calculations of up to 16000 dimensions but also
provides powerful vector operations and indexing capabilities, enabling PostgreSQL to directly transform
into an efficient vector database. IvorySQL, being developed based on PostgreSQL, inherits the seamless
integration capability with pgvector extension, thereby offering users a wider range of data processing and
analysis options. Additionally, in Oracle compatibility mode, the pgvector extension is also available,
providing great convenience for Oracle users to use vector databases, allowing for easy migration and
management of data and achieving more efficient business operations.

Principles
PGVector has two indexing algorithms, IVFFLAT and HNSW.

239

https://postgis.net/docs/manual-3.4

IVFFLAT

The working principle of IVFFLAT is to cluster similar vectors into regions and build an inverted index
mapping each region to its vectors. This allows queries to focus on a subset of the data, enabling fast
searches. By adjusting the parameters of lists and probes, IVFFLAT can balance the speed and accuracy of
the dataset, enabling PostgreSQL to perform rapid semantic similarity searches on complex data. Through
simple queries, applications can find the nearest neighbors to a query vector among millions of high-
dimensional vectors. For tasks such as natural language processing and information retrieval, IVFFLAT
provides an effective solution.

When building an IVFFLAT index, you need to decide how many lists to include in the index. Each list
represents a "center" which are computed using the k-means algorithm. Once all centers are determined,
IVFFLAT determines which center each vector is closest to and adds it to the index. When querying vector
data, you can decide how many centers to check, which is determined by the ivfflat.probes parameter. This
results in a trade-off between ANN performance/recall: the more centers accessed, the more accurate the
results, but at the expense of performance.

HNSW

HNSW (Hierarchical Navigating Small World) is a graph-based indexing algorithm consisting of multiple
layers of neighborhood graphs, hence the name "hierarchical" NSW method. It constructs multiple layers of
navigation graphs for a given graph according to certain rules, with the upper layers of the graph being
sparser and the distances between nodes farther apart; and the lower layers of the graph being denser and
the distances between nodes closer together. HNSW algorithm is a classic trade-off between space and time,
as it achieves high search quality and speed, but at the cost of significant memory overhead. This is because
it not only requires storing all vectors in memory but also maintaining the structure of the graph, which also
needs to be stored.

Installation

The IvorySQL 3.0(above version) has been installed in the environment, and the
installation path is /usr/local/ivorysql/ivorysql-3

Source Code Installation

• Setting PG_CONFIG

export PG_CONFIG=/usr/local/ivorysql/ivorysql-3/bin/pg_config

• Pull pg_vector source code

git clone --branch v0.6.2 https://github.com/pgvector/pgvector.git

• Install pgvector

cd pgvector

sudo --preserve-env=PG_CONFIG make
sudo --preserve-env=PG_CONFIG make install

• Create pgvector extension

[ivorysql@localhost ivorysql-3]$ psql

240

psql (16.2)
Type "help" for help.

ivorysql=# create extension vector;
CREATE EXTENSION

Now, pgvector is installed completely. For more usage cases, please refer to pgvector文档

Oracle Compatible
In IvorySQL’s Oracle compatibility mode, the pgvector extension can also work correctly.

 We suggest users to test using port 1521, using the command: psql -p 1521.

Data Type

ivorysql=# CREATE TABLE items5 (id bigserial PRIMARY KEY, name varchar2(20), num
number(20), embedding bit(3));
CREATE TABLE
ivorysql=# INSERT INTO items5 (name, num, embedding) VALUES ('1st oracle data',0,
'000'), ('2nd oracle data', 111, '111');
INSERT 0 2
ivorysql=# SELECT * FROM items5 ORDER BY bit_count(embedding # '101') LIMIT 5;
 id | name | num | embedding
----+-----------------+-----+-----------
 2 | 2nd oracle data | 111 | 111
 1 | 1st oracle data | 0 | 000

Anonymous Block

ivorysql=# declare
i vector(3) := '[1,2,3]';
begin
raise notice '%', i;
end;
ivorysql-# /
NOTICE: [1,2,3]
DO

PROCEDURE

ivorysql=# CREATE OR REPLACE PROCEDURE ora_procedure()
AS
p vector(3) := '[4,5,6]';

241

https://github.com/pgvector/pgvector?tab=readme-ov-file#getting-started

begin
raise notice '%', p;
end;
/
CREATE PROCEDURE
ivorysql=# call ora_procedure();
NOTICE: [4,5,6]
CALL

FUNCTION

ivorysql=# CREATE OR REPLACE FUNCTION AddVector(a vector(3), b vector(3))
RETURN vector(3)
IS
BEGIN
RETURN a + b;
END;
/
CREATE FUNCTION
ivorysql=# SELECT AddVector('[1,2,3]','[4,5,6]') FROM DUAL;
 addvector

 [5,7,9]
(1 row)

242

List of features
1、Ivorysql frame design

243

Chapter 1. Objective
• In order to minimize changes to the original Postgres, it is compatible with Oracle. We need to

implement a framework for dual-parser, dual-port, modal PLPGSQL to implement PLiSQL. The
implementation flowchart is as follows:

Function

Dual-port design

• The ivorysql port 5432 is kept compatible with the original Postgres situation, so Ivorysql uses another
separate port to log in, which defaults to 1521. Log in from this port, and the Oracle compatibility mode
is used by default. If you need to log in from port 5432 and also enter compatibility mode, you need to
set it through the compatible_mode parameters;

Parser module design

• In order to minimize the interference between Oracle syntax and Postgres syntax, a parser module has
been added to handle oracle-related syntax;

Added PL\iSQL procedural language

-Similarly, in order to reduce the conflict between Oracle compatibility and Postgres syntax, a separate set of
Oracle-specific test cases is designed,This set of test cases is a copy of Postgres' original test framework;

2、GUC Framework
New GUC variables
In order to be compatible with Oracle, it is necessary to add some variables for controlling the database
execution results on the basis of the original GUC variables, so as to achieve the same behavior as Oracle.

In order to better add compatible GUC parameters and to minimize changes to the PG kernel source code,
we need to design a framework to add GUC to a unified location.

244

Achieve

When adding guc parameters, we need to add them uniformly in the ivy_guc.c. Where
Ivy_ConfigureNamesBool, Ivy_ConfigureNamesInt, Ivy_ConfigureNamesString, Ivy_ConfigureNamesReal
and Ivy_ConfigureNamesEnum represent 5 different types of guc parameters. When adding guc parameters,
simply add the value of guc to the corresponding array.

New variables(currently)

Variable Description
ivorysql.compatible_mode Indicates which database (pg/oracle) is currently compatible with,

which can be viewed through the show command. The set command
changes this variable, and the reset command resets it to the database

mode at the time of connection. Resetting all will affect this variable
ivorysql.database_mode Indicates the current database schema (pg/oracle), which can be

viewed through the show command. The set/reset/reset all command
does not affect this variable

ivorysql.datetime_ignore_nls_mas
k

Indicates whether the date format will be affected by the NLS
parameter. The default value is 0, which can be set using the set

command. The reset command resets the date format, and the reset
all command resets the variable

ivorysql.enable_emptystring_to_N
ULL

The value is (on/off), and when this variable is on, it will convert the
inserted empty string into a NULL value for storage

ivorysql.identifier_case_switch Set character case conversion mode
ivorysql.listen_address Indicates the address for compatibility mode listening. When

initializing the database, read the configuration from the ivorysql.conf
file, modify the value in the configuration file, and restart the database

to take effect. This can be viewed through the show command
ivorysql.port Indicates the port number for connecting in compatibility mode. When

initializing the database, read the configuration from the ivorysql.conf
file and modify the value in the configuration file. To take effect, restart

the database and view it through the show command
nls_date_format Represents the default date format, which can be viewed through the

show command and defaults to 'YYYY-MM-DD'. It can be set through
the set command and reset back to the default value through the reset

command. The reset all command will reset this variable
nls_length_semantic Compatible with oracle parameters of the same name, controlling the

size of memory occupied by a character
nls_timestamp_format Compatible with oracle parameters of the same name, controlling date

format with time
nls_timestamp_tz_format Compatible with oracle parameters of the same name, controlling the

date format with time zone
shared_preload_libraries When initializing the database, read from the ivorysql.conf file and view

it through the show command. Modify the value in the configuration
file and restart the database to take effect.

Example

ivorysql.datetime_ignore_nls_mask

The optional values of this GUC variable are from 0 to 15.

optional values Types not formatted through NLS
0 Does not block any types, all time formats are

formatted by NLS.

245

1 date
2 timestamp
3 date、timestamp
4 timestamptz
5 date、timestamptz
6 timestamp、timestamptz
7 date、timestamp、timestamptz
8 timestampltz
9 date、timestampltz
10 timestamp、timestampltz
11 date、timestamp、timestampltz
12 timestamptz、timestampltz
13 date、timestamptz、timestampltz
14 timestamp、timestamptz、timestampltz
15 date、timestamp、timestamptz、timestampltz

• Usage Example(date)

check value of nls_date_format and datetime_ignore_nls_mask

ivorysql=# set ivorysql.compatible_mode to oracle;
SET
ivorysql=# show nls_date_format;
 nls_date_format

 YYYY-MM-DD
(1 row)
ivorysql=# show ivorysql.datetime_ignore_nls_mask;
 ivorysql.datetime_ignore_nls_mask

 0
(1 row)

create a table for testing

ivorysql=# create table test_nls_date(a int, created_at date);
CREATE TABLE

insert data

ivorysql=# insert into test_nls_date values(1, '2024/04/05');
INSERT 0 1
ivorysql=# select * from test_nls_date;

246

 a | created_at
---+------------
 1 | 2024-04-05
(1 row)

modify nls_date_format

ivorysql=# set nls_date_format to 'yy-mm-dd';
SET

Insert NLS formatted data and view, insert successfully.

ivorysql=# insert into test_nls_date values(2, '24/04/15');
INSERT 0 1
ivorysql=# select * from test_nls_date;
 a | created_at
---+------------
 1 | 24-04-05
 2 | 24-04-15
(2 rows)

Changing the date type to not undergo NLS processing, and inserting the same data, such as changing it to 1
(3, 5, 7, etc.), will result in an error upon data insertion. NLS formatting will not affect the query results for
dates.

ivorysql=# set ivorysql.datetime_ignore_nls_mask to 1;
SET
ivorysql=# insert into test_nls_date values(3, '24/05/15');
ERROR: date/time field value out of range: "24/05/15"
LINE 1: insert into test_nls_date values(3, '24/05/15');
 ^
HINT: Perhaps you need a different "datestyle" setting.
ivorysql=# select * from test_nls_date;
 a | created_at
---+------------
 1 | 2024-04-05
 2 | 2024-04-15
(2 rows)

3、Case conversion
Objective
• In order to meet the case compatibility of PG and Oracle’s reference identifiers, ivorysql has designed

247

three case conversion modes for reference identifiers. Select the conversion mode via the GUC
parameter "identifier_case_switch";

Function

Three modes of case conversion (interchange by default)

• If the value of the guc parameter "identifier_case_switch" is "normal":

1). The letters in the identifier referenced by the double quotation mark are left
unchanged.

• If the value of the guc parameter "identifier_case_switch" is "interchange":

1). If the letters in the identifier referenced by the double quotation mark are
all uppercase, uppercase is converted to lowercase.

2). If the letters in the identifier referenced by the double quotation mark are
all lowercase, lowercase is converted to uppercase.

3). If the letters in the identifier enclosed in double quotation marks are mixed-
case, the identifier is left unchanged.

• If the value of the guc parameter "identifier_case_switch" is "lowercase":

1). If the letters in the identifier referenced by the double quotation mark are
all uppercase, uppercase is converted to lowercase.

2). If the letters in the identifier enclosed in double quotation marks are mixed-
case, the identifier is left unchanged.

When the database cluster is initialized

• Add the -C option to the initdb program to set the case conversion mode, and the corresponding value
of -C is:

"normal" ------ "0"synonymy

"interchange" ------ "1"synonymy

"lowercase" ------ "2"synonymy

During initialization of the database cluster, the case conversion pattern is saved to the global/pg_control

248

file in the data directory;

Use Cases

normal

ivorysql=# SET ivorysql.compatible_mode to oracle;
SET

ivorysql=# SET ivorysql.enable_case_switch = true;
SET

ivorysql=# SET ivorysql.identifier_case_switch = normal;
SET

ivorysql=# CREATE TABLE "NORMAL_1"(c1 int, c2 int);
CREATE TABLE

ivorysql=# CREATE TABLE "Normal_2"(c1 int, c2 int);
CREATE TABLE

ivorysql=# CREATE TABLE "normal_3"(c1 int, c2 int);
CREATE TABLE

ivorysql=# select * from "NORMAL_1";
 c1 | c2
----+----
(0 rows)

ivorysql=# select * from "Normal_1";
ERROR: relation "Normal_1" does not exist
LINE 1: select * from "Normal_1";

ivorysql=# select * from "normal_1";
ERROR: relation "normal" does not exist
LINE 1: select * from "normal";

ivorysql=# select * from NORMAL_1;
ERROR: relation "normal_1" does not exist
LINE 1: select * from NORMAL_1;

ivorysql=# select * from "Normal_2";
 c1 | c2
----+----

249

(0 rows)

ivorysql=# select * from "NORMAL_2";
ERROR: relation "NORMAL_2" does not exist
LINE 1: select * from "NORMAL_2";

ivorysql=# select * from "normal_2";
ERROR: relation "normal_2" does not exist
LINE 1: select * from "normal_2";

ivorysql=# select * from Normal_2;
ERROR: relation "normal_2" does not exist
LINE 1: select * from Normal_2;

ivorysql=# select * from "normal_3";
 c1 | c2
----+----
(0 rows)

ivorysql=# select * from "NORMAL_3";
ERROR: relation "NORMAL_3" does not exist
LINE 1: select * from "NORMAL_3";

ivorysql=# select * from "Normal_3";
ERROR: relation "Normal_3" does not exist
LINE 1: select * from "Normal_3";

ivorysql=# drop table "NORMAL_1";
DROP TABLE
ivorysql=# drop table "Normal_2";
DROP TABLE
ivorysql=# drop table "normal_3";
DROP TABLE

interchange

ivorysql=# SET ivorysql.compatible_mode to oracle;
SET

ivorysql=# SET ivorysql.enable_case_switch = true;
SET

250

ivorysql=# SET ivorysql.identifier_case_switch = interchange;
SET

ivorysql=# CREATE TABLE "INTER_CHANGE_1"(c1 int, c2 int);
CREATE TABLE

ivorysql=# CREATE TABLE "Inter_Change_2"(c1 int, c2 int);
CREATE TABLE

ivorysql=# CREATE TABLE "inter_change_3"(c1 int, c2 int);
CREATE TABLE

ivorysql=# select * from "INTER_CHANGE_1";
 c1 | c2
----+----
(0 rows)

ivorysql=# select * from "Inter_Change_1";
ERROR: relation "Inter_Change_1" does not exist
LINE 1: select * from "Inter_Change_1";

ivorysql=# select * from "inter_change_1";
ERROR: relation "INTER_CHANGE_1" does not exist
LINE 1: select * from "inter_change_1";

ivorysql=# select * from INTER_CHANGE_1;
 c1 | c2
----+----
(0 rows)

ivorysql=# select * from "Inter_Change_2";
 c1 | c2
----+----
(0 rows)

ivorysql=# select * from "INTER_CHANGE_2";
ERROR: relation "inter_change_2" does not exist
LINE 1: select * from "INTER_CHANGE_2";

ivorysql=# select * from "inter_change_2";
ERROR: relation "INTER_CHANGE_2" does not exist
LINE 1: select * from "inter_change_2";

251

ivorysql=# select * from Inter_Change_2;
ERROR: relation "inter_change_2" does not exist
LINE 1: select * from Inter_Change_2;

ivorysql=# select * from "inter_change_3";
 c1 | c2
----+----
(0 rows)

ivorysql=# select * from "INTER_CHANGE_3";
ERROR: relation "inter_change_3" does not exist
LINE 1: select * from "INTER_CHANGE_3";

ivorysql=# select * from "Inter_Change_3";
ERROR: relation "Inter_Change_3" does not exist
LINE 1: select * from "Inter_Change_3";

ivorysql=# select * from inter_change_3;
ERROR: relation "inter_change_3" does not exist
LINE 1: select * from "INTER_CHANGE_3";

ivorysql=# drop table "INTER_CHANGE_1";
DROP TABLE
ivorysql=# drop table "Inter_Change_2";
DROP TABLE
ivorysql=# drop table "inter_change_3";
DROP TABLE

lowercase

ivorysql=# SET ivorysql.compatible_mode to oracle;
SET

ivorysql=# SET ivorysql.enable_case_switch = true;
SET

ivorysql=# SET ivorysql.identifier_case_switch = lowercase;
SET

ivorysql=# CREATE TABLE "LOWER_CASE_1"(c1 int, c2 int);
CREATE TABLE

252

ivorysql=# CREATE TABLE "Lower_Case_2"(c1 int, c2 int);
CREATE TABLE

ivorysql=# CREATE TABLE "lower_case_3"(c1 int, c2 int);
CREATE TABLE

ivorysql=# select * from "LOWER_CASE_1";
 c1 | c2
----+----
(0 rows)

ivorysql=# select * from "Lower_Case_1";
ERROR: relation "Lower_Case_1" does not exist
LINE 1: select * from "Lower_Case_1";

ivorysql=# select * from "lower_case_1";
 c1 | c2
----+----
(0 行记录)

ivorysql=# select * from LOWER_CASE_1;
 c1 | c2
----+----
(0 行记录)

ivorysql=# select * from "Lower_Case_2";
 c1 | c2
----+----
(0 rows)

ivorysql=# select * from "LOWER_CASE_2";
ERROR: relation "lower_case_2" does not exist
LINE 1: select * from "LOWER_CASE_2";

ivorysql=# select * from "lower_case_2";
ERROR: relation "lower_case_2" does not exist
LINE 1: select * from "lower_case_2";

ivorysql=# select * from Lower_Case_2;

253

ERROR: relation "lower_case_2" does not exist
LINE 1: select * from Lower_Case_2;

ivorysql=# select * from "lower_case_3";
 c1 | c2
----+----
(0 rows)

ivorysql=# select * from "LOWER_CASE_3";
 c1 | c2
----+----
(0 rows)

ivorysql=# select * from "Lower_Case_3";
ERROR: relation "Lower_Case_3" does not exist
LINE 1: select * from "Lower_Case_3";

ivorysql=# select * from LOWER_CASE_3;
 c1 | c2
----+----
(0 行记录)

ivorysql=# drop table "NORMAL_1";
DROP TABLE
ivorysql=# drop table "Normal_2";
DROP TABLE
ivorysql=# drop table "normal_3";
DROP TABLE

4、Dual-mode design
Objective
• In order to support both the PG mode and Oracle-compatible mode, IvorySQL allows specifying the -m

parameter during initdb to obtain either a PG mode database or an Oracle-compatible mode database.

• If the -m parameter is not specified, it defaults to Oracle-compatible mode.
• If the -m parameter is specified as pg, the database will no longer be compatible with Oracle syntax.

Function
• Initdb -m initialization requires judgment of different modes, among which oracle mode requires the

execution of SQL statements postgres_oracle.bki. The default is Oracle compatibility mode, and the
process is as follows:

254

• Startup: When starting, it determines whether it is an Oracle compatibility mode based on the
initialization mode;

Description:
database_mode: Used to indicate initialization mode;
database_mode=DB_PG，PG mode, and cannot be switched;
database_mode=DB_ORACLE， oracle compatibility mode;

Test cases

Initialize the PG mode:
./initdb -D ../data -m pg

Initialize the Oracle compatibility mode:
./initdb -D ../data -m oracle

or
./initdb -D ../data

5、Compatible with oracle like
Objective
• This document is intended to provide people using like fuzzy queries with an in-depth understanding of

Oracle-compatible fuzzy query like implementations.

Function description

Database name Like fuzzy queries
oracle oracle’s string type is varchar2, which supports

fuzzy queries using the Like keyword with wildcards
for columns of number, date, and string field types

IvorySQL The basic type of IvorySQL’s string is text, so like is
based on text, and other IvorySQL types can be
implicitly converted to text, so that they can be
automatically converted without creating opeartor

Test cases

create table t_ora_like (id int ,str1 varchar(8), date1 timestamp with time zone,
date2 time with time zone, num int, str2 varchar(8));
insert into t_ora_like (id ,str1 ,date1 ,date2) values (123456,'test1','2022-09-26
16:39:20','2022-09-26 16:39:20');
insert into t_ora_like (id ,str1 ,date1 ,date2) values (123457,'test2','2022-09-26
16:40:20','2022-09-26 16:40:20');
insert into t_ora_like (id ,str1 ,date1 ,date2) values (223456,'test3','2022-09-26
16:41:20','2022-09-26 16:41:20');

255

insert into t_ora_like (id ,str1 ,date1 ,date2) values (123458,'test4','2022-09-26
16:42:20','2022-09-26 16:42:20');

select * from t_ora_like where str1 like 'test%';
 id | str1 | date1 | date2 | num | str2
--------+-------+-----------------------------------+-------------+-----+------
 123456 | test1 | 2022-09-26 16:39:20.000000 +08:00 | 16:39:20+08 | |
 123457 | test2 | 2022-09-26 16:40:20.000000 +08:00 | 16:40:20+08 | |
 223456 | test3 | 2022-09-26 16:41:20.000000 +08:00 | 16:41:20+08 | |
 123458 | test4 | 2022-09-26 16:42:20.000000 +08:00 | 16:42:20+08 | |
(4 rows)

select * from t_ora_like where date1 like '2022%';
 id | str1 | date1 | date2 | num | str2
--------+-------+-----------------------------------+-------------+-----+------
 123456 | test1 | 2022-09-26 16:39:20.000000 +08:00 | 16:39:20+08 | |
 123457 | test2 | 2022-09-26 16:40:20.000000 +08:00 | 16:40:20+08 | |
 223456 | test3 | 2022-09-26 16:41:20.000000 +08:00 | 16:41:20+08 | |
 123458 | test4 | 2022-09-26 16:42:20.000000 +08:00 | 16:42:20+08 | |
(4 rows)

select * from t_ora_like where date2 like '16%';
 id | str1 | date1 | date2 | num | str2
--------+-------+-----------------------------------+-------------+-----+------
 123456 | test1 | 2022-09-26 16:39:20.000000 +08:00 | 16:39:20+08 | |
 123457 | test2 | 2022-09-26 16:40:20.000000 +08:00 | 16:40:20+08 | |
 223456 | test3 | 2022-09-26 16:41:20.000000 +08:00 | 16:41:20+08 | |
 123458 | test4 | 2022-09-26 16:42:20.000000 +08:00 | 16:42:20+08 | |
(4 rows)

select * from t_ora_like where id like '123%';
 id | str1 | date1 | date2 | num | str2
--------+-------+-----------------------------------+-------------+-----+------
 123456 | test1 | 2022-09-26 16:39:20.000000 +08:00 | 16:39:20+08 | |
 123457 | test2 | 2022-09-26 16:40:20.000000 +08:00 | 16:40:20+08 | |
 123458 | test4 | 2022-09-26 16:42:20.000000 +08:00 | 16:42:20+08 | |
(3 rows)

select * from t_ora_like where id like null;
 id | str1 | date1 | date2 | num | str2
----+------+-------+-------+-----+------
(0 rows)

256

6、Compatible with oracle anonymous block
Objective
• This document is a design document for the PLSQL anonymous block compatible Oracle syntax

function, in order to be compatible with Oracle’s anonymous block statements in IvorySQL.

Function description
• Anonymous blocks are PLSQL structures that dynamically create and execute procedural code without

the need to persistently store the code as database objects in the system directory. In this
implementation, IvorySQL is mainly compatible with the syntax format of PLSQL anonymous blocks, and
the parts we mainly deal with include client tool psql, master server and PSQL side support.

Test cases

declare
i integer := 10;
begin
 raise notice '%', i;
 raise notice '%', main.i;
end;
/
NOTICE: 10
NOTICE: 10

DECLARE
 grade CHAR(1);
BEGIN
 grade := 'B';
 CASE grade
 WHEN 'A' THEN raise notice 'Excellent';
 WHEN 'B' THEN raise notice 'Very Good';
 END CASE;
EXCEPTION
 WHEN CASE_NOT_FOUND THEN
 raise notice 'No such grade';
END;
/
NOTICE: Very Good

7、Compatible with Oracle functions and stored procedures
Objective
• This document is intended to be compatible with the syntax of Oracle PLSQL functions and stored

257

procedures, which we call PLISQL in IvorySQL.

Function description
FUNCTION

THE FUNCTION SYNTAX SUPPORTS EDITIONABLE/NONEDITIONABLE
THE FUNCTION syntax supports the RETURN, IS keywords, and does not specify language
THE FUNCTION syntax functions have no arguments, and the function name does not follow ()
The maximum number of CREATE FUNCTION parameters is 32767
THE CREATE FUNCTION in END; End with / in psql
THE CREATE FUNCTION syntax variable declaration is not preceded by the DECLARE keyword
THE CREATE FUNCTION SYNTAX SUPPORTS THE OUT PARAMETER NOCOPY
THE CREATE FUNCTION syntax supports sharing_clause
THE CREATE FUNCTION syntax supports invoker_rights_clause, and the default permission is changed to
DR (DEFINER)
THE CREATE FUNCTION syntax supports ACCESSIBLE BY
THE CREATE FUNCTION SYNTAX SUPPORTS DEFAULT COLLATION
THE CREATE FUNCTION syntax supports result_cache_clause
THE CREATE FUNCTION syntax supports aggregate_clause
THE CREATE FUNCTION syntax supports pipelined_clause
THE CREATE FUNCTION syntax supports sql_macro_clause
ALTER FUNCTION syntax
Functions and stored procedure-related views

Stored procedures

THE CREATE PROCEDURE SYNTAX SUPPORTS EDITIONABLE/NONEDITIONABLE
THE CREATE PROCEDURE syntax function has no arguments, no () after the function name
The maximum number of CREATE PROCEDURE parameters is 32767
THE CREATE PROCEDURE in END; End with / in psql
THE CREATE PROCEDURE syntax supports sharing_clause
THE CREATE PROCEDURE SYNTAX SUPPORTS DEFAULT COLLATION
THE CREATE PROCEDURE syntax supports invoker_rights_clause
THE CREATE PROCEDURE syntax supports ACCESSIBLE BY
ALTER PROCEDURE syntax
Stored procedures have no parameters, and invocation support is not carried out with ()
Stored procedure calls support EXEC
When calling a stored procedure in PL/SQL, you can omit CALL and use the stored procedure name directly

Both annotation methods are supported — and /**/

Test cases

declare
i integer := 10;
begin

258

 raise notice '%', i;
 raise notice '%', main.i;
end;
/
NOTICE: 10
NOTICE: 10

DECLARE
 grade CHAR(1);
BEGIN
 grade := 'B';
 CASE grade
 WHEN 'A' THEN raise notice 'Excellent';
 WHEN 'B' THEN raise notice 'Very Good';
 END CASE;
EXCEPTION
 WHEN CASE_NOT_FOUND THEN
 raise notice 'No such grade';
END;
/
NOTICE: Very Good

8、Built-in data types and built-in functions
Built-in data types

char
varchar
varchar2
number
binary_float
binary_double
date
timestamp
timestamp with time zone
timestamp with local time zone
interval year to month
interval day to second
raw
long

259

Built-in functions

sysdate
systimestamp
add_months
last_day
next_day
months_between
current_date
current_timestamp
new_time
tz_offset
trunc
instrb
substr
substrb
trim
ltrim
rtrim
length
lengthb
rawtohex
replace
regexp_replace
regexp_substr
regexp_instr
regexp_like
to_number
to_char
to_date
to_timestamp
to_timestamp_tz
to_yminterval
to_dsinterval
numtodsinterval
numtoyminterval
localtimestamp
from_tz
sys_extract_utc
sessiontimezone
hextoraw
uid

260

USERENV

Built-in function descriptions
1、Compatible with sysdate function, function: view the corresponding date and time, the test cases are as
follows: Query the date of the current system:

select sysdate() from dual;
 sysdate

 2023-07-06
(1 row)

Check the date pushed forward by 1 day:

select sysdate()-1 from dual;
 ?column?

 2023-07-05
(1 row)

2、Compatible with the systimestamp function, function: return the current system date and time (including
microseconds and time zone) on the local database, the test cases are as follows: Date and time to query the
current date:

select systimestamp() from dual;
 systimestamp

 2023-07-06 10:18:31.674322 +08:00
(1 row)

3、Compatible with add_months functions, function: the function adds a date to the number of months (n),
and returns the same day that is n months apart, supporting parameters: date, number; The test cases are as
follows: Check the same day of the following month on the current date (July 6):

select add_months(sysdate(),1) from dual;
 add_months

 2023-08-06
(1 row)

Query the same day of the previous month for the current date:

select add_months(sysdate(),-1) from dual;
 add_months

261

 2023-06-06
(1 row)

4、Compatible with last_day functions, function: return the last day of the month where the specified date is
located, support parameters: date, the test cases are as follows: Check the last day of the month in which the
day is located:

select last_day(sysdate())from dual;
 last_day

 2023-07-31
(1 row)

Query the last day of the month on which a day falls:

select last_day(to_date('2019-09-01'))from dual;
 last_day

 2019-09-30
(1 row)

5、 Compatible with next_day functions, function: return the next date of the specified date. Supported
parameters: date, integer /date, text, Note: When the second parameter in the function passes the number of
weeks more hours than the existing week, the date of the next week will be returned; When the date passed
by the second parameter in the function is greater than the existing number of weeks, the corresponding day
of the week of the week is returned. The test cases are as follows: Query the next day of the current date:

select next_day(sysdate(),1) from dual;
 next_day

 2023-07-07
(1 row)

Next Friday for the current date:

select next_day(sysdate(),'FRIDAY') from dual;
 next_day

 2023-07-07
(1 row)

6、Compatible with months_between functions, function: return the month of difference between date1
and date2 of date type, support parameters: date, date, description: if date1 is later than date2, return a
positive number; If date1 is earlier than date2, a negative number is returned; If date1 and date2 are the
same day of a month, the return result is an integer; If not the same day, results with decimal parts are

262

returned on a monthly basis of 31 days. The test cases are as follows: To find the month that differs between
the same day in different months:

select months_between(to_date('2023-07-06'),to_date('2023-08-06')) from dual;
 months_between

 -1
(1 row)

Query the month that differs between different days of different months:

select months_between(to_date('2023-07-06'),to_date('2023-08-05')) from dual;
 months_between

 -0.967741935483871
(1 row)

7、Compatible with current_date functions, functions: return the current date of the current time zone, the
test cases are as follows: To query the current date in the current time zone:

select current_date from dual;
 current_date

 2023-07-06
(1 row)

8、Compatible with current_timestamp functions, function: return the current date and current time of the
current time zone, including the current time zone information. Support parameters: integer, Note: The
returned time can be adjusted with precision. The test cases are as follows: To query the current date and
time in the current time zone:

select current_timestamp from dual;
 current_timestamp

 2023-07-06 10:27:01.440600 +08:00
(1 row)

Query the current date and time in the current time zone (the precision is adjusted to the first three decimal
places):

select current_timestamp(3) from dual;
 current_timestamp

 2023-07-06 10:27:14.182000 +08:00

263

(1 row)

9、Compatible with new_time functions, function: return the date in another time zone corresponding to a
certain time zone, support parameters: date, text, text, the test case is as follows: Returns the date for the
current date in another time zone:

select sysdate() bj_time,new_time(sysdate(),'PDT','GMT')los_angles from dual;
 bj_time | los_angles
------------+------------
 2023-07-06 | 2023-07-06
(1 row)

10、Compatible with tz_offset functions, function: return the offset of the given time zone and the standard
time zone, support parameters: text, the test case is as follows: Returns the offset of a given time zone from
the standard time zone:

select tz_offset('US/Eastern') from dual;
 tz_offset

 -04:00
(1 row)

11、Compatible with trunc function, function: you can intercept the date to get the desired value, such as
year, month, day, hour, minute, support parameters: date/date, text, the test case is as follows: Intercept the
current date:

select trunc(sysdate()) from dual;
 trunc

 2023-07-06
(1 row)

Truncating the year, only the year is correct, and the month and day are not accurate values:

select trunc(sysdate(),'yyyy') from dual;
 trunc

 2023-01-01
(1 row)

Intercept the month, the return value only the month is correct, the year and day are not accurate values:

select trunc(sysdate(),'mm') from dual;
 trunc

264

 2023-07-01
(1 row)

12、Compatible with instrb function, function: string lookup function, return the position of the string,
support parameters: varchar2, text, number DEFAULT 1, number DEFAULT 1, the following are test cases:
RETURNS THE POSITION OF THE STRING IN CORPORATE FLOOR WHEN THE FIRST OR OCCURS BY DEFAULT:

SELECT INSTRB('CORPORATE FLOOR','OR') "Instring in bytes" FROM DUAL;
 Instring in bytes

 2
(1 row)

Returns the position of the string in the corporate floor where the query starts with the fifth character and the
second occurrence of or:

SELECT INSTRB('CORPORATE FLOOR','OR',5,2) "Instring in bytes" FROM DUAL;
 Instring in bytes

 14
(1 row)

13、Compatible with substr function, function: intercept string function, truncated in characters, support
parameters: text, integer, test cases are as follows: Intercept the string from the fifth character in 'It is nice
today', followed by:

SELECT SUBSTR('It is nice today',5) "Substring with bytes" FROM DUAL;

 Substring with bytes

 s nice today
(1 row)

14、Compatible with substrb function, function: intercept string function, intercept in bytes, support
parameters: varchar2, number/varchar2, number, number, the test cases are as follows: Intercept the string
starting with the fifth byte in 'It’s nice today' and then onwards:

SELECT SUBSTRB('It is nice today',5) "Substring with bytes" FROM DUAL;
 Substring with bytes

 s nice today
(1 row)

Intercept the string in 'It is nice today' starting with the fifth byte and ending with the eighth byte:

265

SELECT SUBSTRB('It is nice today',5,8) "Substring with bytes" FROM DUAL;
 Substring with bytes

 s nice t

(1 row)

15、Compatible with trim function, function: remove the left and right spaces or corresponding data of the
specified string, support parameters: varchar2 / varchar2, varchar2, the test cases are as follows: Remove the
left and right spaces of ' aaa bbb ccc ':

select trim(' aaa bbb ccc ')trim from dual;
 trim

 aaa bbb ccc
(1 row)

Remove aaa from 'aaa bbb ccc':

select trim('aaa bbb ccc','aaa')trim from dual;
 trim

 bbb ccc
(1 row)

16、Compatible with ltrim function, function: remove the left space or corresponding data of the specified
string, support parameters: varchar2 / varchar2, varchar2, the test cases are as follows: Remove the space to
the left of ' abcdefg ':

select ltrim(' abcdefg ')ltrim from dual;
 ltrim

 abcdefg
(1 row)

Traverse from the left side of 'abcdefg', remove it as soon as a character appears in 'fegab', and return the
result if it is absent:

select ltrim('abcdefg','fegab')ltrim from dual;
 ltrim

 cdefg
(1 row)

266

17、Compatible with rtrim function, function: remove the space on the right side of the specified string, the
test case is as follows: Remove the space to the right of ' abcdefg ':

select rtrim(' abcdefg ')rtrim from dual;
 rtrim

 abcdefg
(1 row)

Traverse from the right side of 'abcdefg', remove it as soon as a character appears in 'fegab', and return the
result if it is absent:

select rtrim('abcdefg','fegab')rtrim from dual;
 rtrim

 abcd
(1 row)

18、Compatible with the length function, function: find the length of the specified string character, support
parameters: char/integer/varchar2 The test cases are as follows: Query the character length of 223:

select length(223) from dual;
 length

 3
(1 row)

Query the character length of '223':

select length('223') from dual;
 length

 3
(1 row)

To query the character length of 'ivorysql database' :

select length('ivorysql database') from dual;
 length

 17
(1 row)

19、Compatible with lengthb function: find the length of the specified string byte, support parameters:

267

char/bytea/varchar2 test cases are as follows: Query the byte lengthb of 'ivorysql':

select lengthb('ivorysq'::char) from dual;
 lengthb

 1
(1 row)

Query the byte lengthb of '0x2C':

select lengthb('0x2C'::bytea) from dual;
 lengthb

 4
(1 row)

Query the byte lengthb of the 'ivorysql database':

select lengthb('ivorysql database') from dual;
 lengthb

 17
(1 row)

20、compatible with replace function, function: replace the character in the specified string or delete the
character, support parameters: text, text, text/varchar2, varchar2, varchar2 DEFAULT NULL::varchar2, test for
example: Replace 'j' in 'jack and jue' with 'bl' :

select replace('jack and jue','j','bl') from dual;
 replace

 black and blue
(1 row)

Remove the 'j' in 'jack and jue' :

select replace('jack and jue','j') from dual;
 replace

 ack and ue
(1 row)

21、compatible with the regexp_replace function, which is an extension of the replace function. Function:
Used to perform matching and replacement through regular expressions. Supported parameters: text, text,

268

text /text, text, text, integer/varchar2, varchar2/varchar2, varchar2 varchar2, varchar2 varchar2, for example:
Replace the matched number with *#:

select regexp_replace('01234abcd56789','[0-9]','*#')from dual;
 regexp_replace

 ##*#*#*#abcd*#*#*#*#*#
(1 row)

Start with the second number by replacing the matched number with *#:

select regexp_replace('01234abcd56789','[0-9]','*#',2)from dual;
 regexp_replace

 0*#*#*#*#abcd*#*#*#*#*#

Delete '01' from '01234abcd56789':

select regexp_replace('01234abcd56789','01')from dual;
 regexp_replace

 234abcd56789
(1 row)

Replace 01234abcd56789' with 'xxx':

select regexp_replace('01234abcd56789','012','xxx')from dual;
 regexp_replace

 xxx34abcd56789
(1 row)

22、Compatible with regexp_substr functions, function: pick up the character substring described by the
regular expression, support parameters: text, text, integer /text, text, integer, integer / text, text, integer,
integer, text /varchar2, varchar2, the test cases are as follows: Query the 012 string starting with the first
number in '012ab34':

select regexp_substr('012ab34', '012',1) from dual;
 regexp_substr

 012
(1 row)

Query the 012 string in '012ab34' starting from the first number of the first group:

269

select regexp_substr('012ab34', '012',1,1) from dual;
 regexp_substr

 012
(1 row)

Query '012a012Ab34' for case-insensitive 012 strings starting from the first number of the first group:

select regexp_substr('012a012Ab34', '012A',1,1,'i') from dual;
 regexp_substr

 012a
(1 row)

Query '012a012Ab34' for case-sensitive 012 strings starting from the first group of numbers:

select regexp_substr('012a012Ab34', '012A',1,1,'c') from dual;
 regexp_substr

 012A
(1 row)

Query the 'Database' substring in 'Data':

select regexp_substr('Database' , 'Data') from dual;
 regexp_substr

 Data
(1 row)s

23、Compatible with regexp_instr functions, function: used to calibrate the start position of the character
substring that conforms to the regular expression, support parameters: text, text, integer /text, text, integer,
integer / text, text, integer, integer, text, integer / varchar2, varchar2, the test case is as follows: Query
'abcaBcabc' for the position of the abc substring starting from the first character:

SELECT regexp_instr('abcaBcabc', 'abc', 1);
 regexp_instr

 1
(1 row)

Query 'abcaBcabc' starting from the first character, where the abc substring appears for the third time:

270

SELECT regexp_instr('abcaBcabc', 'abc', 1, 3);
 regexp_instr

 7
(1 row)

Query 'abcabcabc' starting from the first character and occurring after the second occurrence of the abc
substring:

SELECT regexp_instr('abcaBcabc', 'abc', 1, 2,1);
 regexp_instr

 7
(1 row)

Query 'abcaBcabc' from the first character, where it occurs after the first occurrence of the abc substring
(case sensitive):

SELECT regexp_instr('abcaBcabc', 'abc',1,2,1,'c');
 regexp_instr

 7
(1 row)

Query the 'Database' substring in 'Data':

SELECT regexp_instr('Database', 'Data');
 regexp_instr

 1
(1 row)

24、Compatible with regexp_like functions, function: similar to like, used for fuzzy queries. Supported
parameters: varchar2, varchar2 /varchar2, varchar2 varchar2, First create a regexp_like table for the test case
query:

create table t_regexp_like
(
 id varchar(4),
 value varchar(10)

);
insert into t_regexp_like values ('1','1234560');

271

insert into t_regexp_like values ('2','1234560');
insert into t_regexp_like values ('3','1b3b560');
insert into t_regexp_like values ('4','abc');
insert into t_regexp_like values ('5','abcde');
insert into t_regexp_like values ('6','ADREasx');
insert into t_regexp_like values ('7','123 45');
insert into t_regexp_like values ('8','adc de');
insert into t_regexp_like values ('9','adc,.de');
insert into t_regexp_like values ('10','abcbvbnb');
insert into t_regexp_like values ('11','11114560');

The test cases are as follows: Query t_regexp_like columns with abc in the table:

select * from t_regexp_like where regexp_like(value,'abc');
 id | value
----+----------
 4 | abc
 5 | abcde
 10 | abcbvbnb
(3 rows)

Query t_regexp_like columns with ABC in the table (not case sensitive):

select * from t_regexp_like where regexp_like(value,'ABC','i');
 id | value
----+----------
 4 | abc
 5 | abcde
 10 | abcbvbnb
(3 rows)

25、Compatible with to_number functions, function: is to change some processed strings arranged in a
certain format back to a numeric format, support parameters: text/text, text test cases are as follows:
Convert the string '-34,338,492' to numeric format:

SELECT to_number('-34,338,492', '99,999,999') from dual;
 to_number

 -34338492
(1 row)

Convert the string '5.01-' to numeric format:

272

SELECT to_number('5.01-', '9.99S');

 to_number

 -5.01
(1 row)

26、Compatible with to_char functions, functions: convert numbers or dates to character types, support
parameters: date/date, text/timestamp/timestamp, text test cases are as follows: To convert the current
system date to character format:

select to_char(sysdate()) from dual;
 to_char

 2023-07-10
(1 row)

Convert current system date to month/day/year character format:

select to_char(sysdate(),'mm/dd/yyyy') from dual;
 to_char

 07/10/2023
(1 row)

Converts the timestamp format of the current date to character format

SELECT to_char(sysdate()::timestamp);
 to_char

 2023-07-10 09:46:44.000000

Convert timestamp format of current date to month/date/year character format:

SELECT to_char(sysdate()::timestamp,'MM-YYYY-DD');
 to_char

 07-2023-10
(1 row)

27、Compatible with to_date functions, function: convert character type to date type, support parameters:
text/text, text test cases are as follows: Convert '2023/07/06' to date type:

273

select to_date('20230706') from dual;
 to_date

 2023-07-06
(1 row)

Convert '-44-02-01' to date type:

SELECT to_date('-44,0201','YYYY-MM-DD');
 to_date

 0044-02-01
(1 row)

28、Compatible with to_timestamp functions, functions: can store year, month, day, hour, minute, second,
and can also store fractional parts of seconds. Supported parameters: text/text, text test cases are as follows:
Query '2018-11-02 12:34:56.025' output as a date:

SELECT to_timestamp('20181102.12.34.56.025');
 to_timestamp

 2018-11-02 12:34:56.025000
(1 row)

Query '2011,12,18 11:38' output as a date:

SELECT to_timestamp('2011,12,18 11:38 ', 'YYYY-MM-DD HH24:MI:SS');
 to_timestamp

 2011-12-18 11:38:00.000000
(1 row)

29、Compatible with to_timestamp_tz functions, functions: according to the time query, the time string has
T, Z and milliseconds, time zone. The test cases are as follows: Query '2016-10-9 14:10:10.123000' output as a
date:

 SELECT to_timestamp_tz('2016-10-9 14:10:10.123000') FROM DUAL;
 to_timestamp_tz

 2016-10-09 14:10:10.123000 +08:00
(1 row)

Query '10-9-2016 14:10:10.123000 +8:30' output as a date:

274

 SELECT to_timestamp_tz('10-9-2016 14:10:10.123000 +8:30', 'DD-MM-YYYY HH24:MI:SS.FF
TZH:TZM') FROM DUAL;
 to_timestamp_tz

 2016-09-10 13:40:10.123000 +08:00
(1 row)

30、Compatible with to_yminterval functions, function: convert a string type to a year and month time
difference type, support parameters: text, The test cases are as follows: Query the date after two years and
eight months after '20110101':

select to_date('20110101','yyyymmdd')+to_yminterval('02-08') from dual;
 ?column?

 2013-09-01
(1 row)

31、Compatible with to_dsinterval functions, function: add a date plus a certain hour or number of days
into another date, support parameters: text, test cases are as follows: Query the current system time plus the
date in 9 and a half hours (currently 2023-07-06, 18:00):

select sysdate()+to_dsinterval('0 09:30:00')as newdate from dual;
 newdate

 2023-07-07
(1 row)

32、compatible with numtodsinterval function, function: convert numbers into time interval type data. The
supporting parameters: double precision, text test cases are as follows: Convert 100.00 hours to interval type
data:

SELECT NUMTODSINTERVAL(100.00, 'hour');
 numtodsinterval

 +000000004 04:00:00.000000000
(1 row)

Convert 100 minutes to interval type data:

SELECT NUMTODSINTERVAL(100, 'minute');
 numtodsinterval

 +000000000 01:40:00.000000000
(1 row)

275

33、Compatible with the numtoyminterval function, function: convert numbers into date interval type data.
Convert 1, year to date interval: double precision, text, the test case is as follows:

SELECT NUMTOYMINTERVAL(1.00,'year');
 numtoyminterval

 +000000001-00
(1 row)

Convert 1, mouth to date interval:

SELECT NUMTOYMINTERVAL(1,'month');
 numtoyminterval

 +000000000-01
(1 row)

34、Compatible with the localtimestamp function, function: return the date and time in the session, support
parameters: integer, add parameters to the function as precision, the test cases are as follows: To return the
date and time in the current session:

select localtimestamp from dual;
 localtimestamp

 2023-07-07 09:18:15.896472
(1 row)

Returns the date and time in the current session with a precision of 1:

select localtimestamp(1) from dual;
 localtimestamp

 2023-07-07 09:18:16.100000
(1 row)

35、Compatible with from_tz functions, functions: convert time from one time zone to another, support
parameters; timestamp, text, the test case is as follows: Convert '2000-03-28 08:00:00', '3:00' to the current
time zone:

SELECT FROM_TZ(TIMESTAMP '2000-03-28 08:00:00', '3:00') FROM DUAL;
 from_tz

 2000-03-28 13:00:00.000000 +08:00
(1 row)

276

36、Compatible with sys_extract_utc functions, function: convert a timestamptz to UTC time zone time.
Supported parameters: timestamp with time zone The test cases are as follows: Query conversion
timestamp '2000-03-28 11:30:00.00 -8:00' to the time after UTC time zone:

select sys_extract_utc(timestamp '2000-03-28 11:30:00.00 -8:00') from dual;
 sys_extract_utc

 2000-03-28 19:30:00.000000
(1 row)

37、Compatible with sessiontimezone function, function: view time zone details, test cases are as follows:
To view the details of the current time zone:

select sessiontimezone() from dual;
 sessiontimezone

 Asia/Shanghai
(1 row)

After modifying the timezone, check the time zone belief information:

set timezone = 'Asia/Hong_Kong';
SET
select sessiontimezone() from dual;
 sessiontimezone

 Asia/Hong_Kong
(1 row)

38、compatible with hextoraw function, function: convert the binary value represented by the string into a
RAW value. Support parameters: text, the test cases are as follows: Convert the string 'abcdef' to a raw value:

select hextoraw('abcdef')from dual;
 hextoraw

 \xabcdef
(1 row)

39、Compatible with uid function, function: get the instance name of the database. The test cases are as
follows: Get the instance name of the current database:

select uid() from dual;
 uid

277

 10
(1 row)

40、Compatible with USERENV function, function: return the information of the current user environment,
the test cases are as follows: Check whether the current user is DBA, and if so, return ture:

select userenv('isdba')from dual;
 get_isdba

 TRUE
(1 row)

To view the session flag:

select userenv('sessionid')from dual;
 get_sessionid

 1
(1 row)

9、Added Oracle compatibility mode ports and IP
Objective
• In order to distinguish the Oracle port, IP and PG port IP. THERE IS NOW A NEED TO INCREASE THE

PROCESSING OF ORAPORT AND ORAHOST;

Function
• Add ivoryhost: You need to add the parameter ivoryhost when connecting, and its function is similar to

host;
• New ivoryport: Compared to host, the function of port is relatively complex. It involves specifying ports in

the configure phase and connection phase;

Test method:

 ./configure --with-oraport=5555
 ./initdb
 ./pg_ctl -D ../data start

 ./pg_ctl -o "-p 5433 -o 1522" -D ../data

278

10、XML Function
Objective
In Oracle, SQL code often contains XML functions. To ensure consistency in data format and structure when
migrating from Oracle to IvorySQL, IvorySQL achieves high compatibility with Oracle XML functions, building
upon the foundation of PostgreSQL.

This compatibility means that users do not need to make extensive modifications to their existing XML
processing logic, thereby ensuring the integrity and accuracy of the data. Furthermore, IvorySQL’s cross-
platform compatibility reduces the additional user maintenance and upgrade costs caused by format
differences, making data processing and management more efficient, reliable, and flexible.

XML (eXtended Markup Language) is a text-based format language used to structure any
document that can be tagged. It is a lightweight, extensible, standard, and easy-to-
understand language for storing data.

Implementation Principle
When IvorySQL achieves compatibility with 11 commonly used XML SQL functions in Oracle 12c, it maintains
consistency with PostgreSQL by utilizing the same underlying processing functions, which are provided by
the libxml2 library interface. These XML functions are provided as a sub-plugin of the ivorysql_ora plugin,
ensuring compatibility and consistency with PostgreSQL databases in terms of XML processing.

Due to Oracle’s XML functions requiring certain parameter types to be XMLType, such as the existsnode()
function below:

Prototype: EXISTSNODE(XMLType_instance, XPath_string [, namespace_string])

Demo: SELECT existsnode(XMLType('<a>d'), '/a') from dual;

Therefore, for compatibility purposes, an XMLType data type has been added. Its function is to convert the
string provided by the user into an internal XMLType type, allowing SQL statements to be migrated from
Oracle to IvorySQL without modification.

Additionally, to avoid confusion with the existing keyword "extract" in PostgreSQL, IvorySQL has renamed
the original keyword to "PGEXTRACT" to ensure clarity and accuracy in function calls.

When implementing these 11 Oracle-compatible XML functions, IvorySQL adopted two different approaches.
Among them, besides the UPDATEXML function, the other 10 functions are implemented using SQL
functions. Since the number of parameters for the UPDATEXML function is uncertain, an expression-based
approach was used for its implementation. This required writing specialized syntax parsing and executor
code to ensure the correctness and flexibility of its functionality.

Compatible Function

Num Function Name Function Introduction
1 extract(XML) This function is used to return the

corresponding content under the
XML node path. The parameter
XMLType_instance is used to
specify the XMLType instance,
while Xpath_string is used to
specify the XML node path.

2 extractvalue This function provides retrieval
functionality for XML content. The
extractvalue function can only
return one value from one node.

279

3 existsnode This function is used to check
whether the XML content matches
the specified path expression.

4 deletexml This function is used to delete XML
nodes at specified paths.

5 appendchildxml This function is used to insert child
nodes into an XML object. It takes
an XML object and an XML
fragment as parameters, and
inserts the XML fragment as a child
node into the XML object.

6 updatexml This function is used to update the
content of a specific XML node
path.

7 insertxmlbefore This function is used to insert child
nodes before a specified path in
XML.

8 insertxmlafter This function is used to insert child
nodes after a specified path in
XML.

9 insertchildxml This function is used to insert child
nodes into a specified XML path.

10 insertchildxmlbefore This function is used to insert child
nodes before a specified XML path.

11 insertchildxmlafter This function is used to insert child
nodes after a specified XML path.

XML Function Demo

Prepare table and data

ivorysql=# set ivorysql.compatible_mode to oracle;
SET
ivorysql=# create table inaf(a int, b xmltype);
CREATE TABLE
ivorysql=# insert into inaf values(1,xmltype('<a>100'));
INSERT 0 1
ivorysql=# insert into inaf values(2, '');
INSERT 0 1
ivorysql=# select * from inaf;
 a | b
---+-------------------
 1 | <a>100
 2 |
(2 rows)
ivorysql=# create table xmltest(id int, data XMLType);
CREATE TABLE
ivorysql=# insert into xmltest values(1, '<value>one</value>');

280

INSERT 0 1
ivorysql=# insert into xmltest values(2, '<value>two</value>');
INSERT 0 1
ivorysql=# select * from xmltest;
 id | data
----+--------------------
 1 | <value>one</value>
 2 | <value>two</value>
(2 rows)
ivorysql=# create table xmlnstest(id int, data xmltype);
CREATE TABLE
ivorysql=# INSERT INTO xmlnstest VALUES(1, xmltype('<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:typ="http://www.def.com"
xmlns:web="http://www.abc.com"><soapenv:Body><web:BBB><typ:EEE>41</typ:EEE><typ:FFF>42
</typ:FFF></web:BBB></soapenv:Body></soapenv:Envelope>'));
INSERT 0 1

extract(XML)

ivorysql# SELECT extract(XMLType('<AA><ID>1</ID></AA>'), '/AA/ID') from dual;
 extract

 <ID>1</ID>
(1 row)

extractvalue

ivorysql# SELECT extractvalue(XMLType('<a>100'),'/a/b') from dual;
 extractvalue

 100
(1 row)

existsnode

ivorysql=# SELECT existsnode(XMLType('<a>d'), '/a/b') from dual;
 existsnode

 1
(1 row)

281

deletexml

ivorysql=# SELECT
deletexml(XMLType('<test><value>oldnode</value><value>oldnode</value></test>'),
'/test/value') from dual;
 deletexml

 <test/>
(1 row)

appendchildxml

ivorysql=# ELECT
appendchildxml(XMLType('<test><value></value><value></value></test>'), '/test/value',
XMLTYPE('<name>newnode</name>')) from dual;
 appendchildxml

 <test> +
 <value> +
 <name>newnode</name>+
 </value> +
 <value> +
 <name>newnode</name>+
 </value> +
 </test>
(1 row)

updatexml

ivorysql=# SELECT updatexml(xmltype('<value>one</value>'), '/value',
xmltype('<newvalue>1111</newvalue>')) FROM dual;
 updatexml

 <newvalue>1111</newvalue>
(1 row)

insertxmlbefore

ivorysql=# SELECT insertxmlbefore(XMLType('<a>222100200'), '/a/b',
XMLTYPE('<c>88</c>')) from dual;
 insertxmlbefore
--
 <a>222<c>88</c>100<c>88</c>200

282

(1 row)

insertxmlafter

ivorysql=# SELECT
insertxmlafter(XMLType('<a>100'),'/a/b',XMLType('<c>88</c>')) from dual;
 insertxmlafter

 <a> +
 100 +
 <c>88</c> +

(1 row)

insertchildxml

ivorysql=# SELECT insertchildxml(XMLType('<a>onethree'), '//b',
'name', XMLTYPE('<name>newnode</name>')) from dual;
 insertchildxml

 <a>one<name>newnode</name>three<name>newnode</name>
(1 row)

insertchildxmlbefore

ivorysql=# SELECT insertchildxmlbefore(XMLType('<a>100'), '/a', 'b',
XMLType('<c>88</c>')) from dual;
 insertchildxmlbefore

 <a> +
 <c>88</c> +
 100 +

(1 row)

insertchildxmlafter

ivorysql=# SELECT insertchildxmlafter(XMLType('<a>100'), '/a', 'b',
XMLType('<c>88</c>')) from dual;
 insertchildxmlafter

 <a> +

283

 100 +
 <c>88</c> +

(1 row)

284

Community contribution
Summary
Illustration
IvorySQL is maintained by a core development team, which has commit access to the main repository of
IvorySQL on GitHub.Meanwhile，we are eager to get contributions from members of the wider IvorySQL
community. If you want to see your changes to code or documents added to IvorySQL and appear in future
versions, you need to know the content of this section.

IvorySQL community welcomes and appreciates all types of contributions, looking forward to your
participation!

Principles of Conduct
For each member, contributor and leader, everyone should read our principles of conduct . We promise that
everyone can participate in community and pay equal attention to everyone, no matter who.

We are committed to acting and interacting in a way that contributes to the establishment of an open,
enthusiastic, diverse, inclusive and healthy community.

Description of Community Governance
Our team is a continuously open team, focusing on a part of the IvorySQL.In our team, there are reviewers,
submitters and maintainers, and we have one or more repositories. The decision of the team is made by the
maintainer. The typical promotion path for IvorySQL developers is from user to reviewer, then submitter and
maintainer. But getting more roles doesn’t mean you have any privileges to other community members.
Everyone in the IvorySQL community is equal and has the responsibility to cooperate constructively with
other contributors to build a friendly community. These roles are natural rewards for your significant
contributions to the development of IvorySQL, and provide you with more rights in the development
workflow to improve your efficiency. At the same time，this requires you to undertake some additional duty:

Team honor: now you are already one of the team reviewers/submitters/maintainers, it means that you
represent the project and your team members. So, please be Mr.Nice Guy to defend the reputation of the
team.

Responsibility: submitters/maintainers have the right to merge pull requests, therefore, they take additional
responsibility to deal with the consequences of accepting changes to the code base or documents. When a
bug occurs, they should fix it. If they can not solve it, they should roll back the project. Also, they need to help
the release manager solve any problems found in the test cycle.

Contributor’s Guide
Before contributing, we need to know the current version of IvorySQL and the version of the document.At
present, we maintain versions after version 1.3. Our version follows the updata pace of PG. Please update to
the latest version before contributing. After that, we need to read the format requirements carefully and be
familiar with code format, code comment format, issue format, pull PR title format, document contribution
format, and article contribution format. These can help you become a contributor of IvorySQL as soon as
possible.

Preparation before Contribution

Getting started

IvorySQL is developed on GtiHub. Anyone who wishes to contribute to it must have a Github account and be
familiar with Git tools and workflow. It is also recommended that you follow the developer’s mailing list
since some of the contributions may generate more detailed discussions there.

285

Once you have your GitHub account, fork this repository so that you can have your private copy to start
hacking on and to use as a source of pull requests.

Licensing of IvorySQL contributions

If the contribution you’re submitting is original work, you can assume that IvorySQL will release it as part of
an overall IvorySQL release available to the downstream consumers under the Apache License, Version 2.0.

If the contribution you’re submitting is NOT original work you have to indicate the name of the license and
also make sure that it is similar in terms to the Apache License 2.0. Apache Software Foundation maintains a
list of these licenses under Category A. In addition to that, you may be required to make proper attributions.

Finally, keep in mind that it is NEVER a good idea to remove licensing headers from the work that is not your
original one. Even if you are using parts of the file that originally had a licensing header at the top you should
err on the side of preserving it. As always, if you are not quite sure about the licensing implications of your
contributions, feel free to reach out to us on the developer mailing list.

What Contribution can You Make

Code Contribution

You can upload your modified bugs, new functions and other codes to your personal warehouse, and finally
submit PR requests to merge them on the official website: https://github.com/IvorySQL/IvorySQL.

Document Contribution(https://www.ivorysql.org/zh-CN/docs/intro)

The IvorySQL community provides Chinese and English documents. English documents are saved in …
document repository, Chinese documents are saved in i18n document repository. You can contribute to one
of them or both.

Test IvorySQL and Report Bugs

GitHub: https://github.com/IvorySQL/IvorySQL

Gitee:https://gitee.com/IvorySQL/

Participate in the Construction of IvorySQL Website

IvorySQL official website:https://github.com/IvorySQL/Ivory-www

Answer Questions on the Mailing List

Mailing List website:https://lists.ivorysql.org/

Contribute Article

You can submit your article to the blog in the IvorySQL-WWW code warehouse, or send it to the mailbox
renjiao@highgo.com.

How to Contribute

Coding Guidelines

Your chances of getting feedback and seeing your code merged into the project greatly depend on how
granular your changes are. If you happen to have a bigger change in mind, we highly recommend engaging
on the developer’s mailing list first and sharing your proposal with us before you spend a lot of time writing
code. Even when your proposal gets validated by the community, we still recommend doing the actual work
as a series of small, self-contained commits. This makes the reviewer’s job much easier and increases the
timeliness of feedback.

286

https://github.com/IvorySQL/IvorySQL
https://github.com/IvorySQL/IvorySQL
https://github.com/IvorySQL/IvorySQL
https://github.com/IvorySQL/IvorySQL
https://github.com/IvorySQL/IvorySQL
https://www.ivorysql.org/zh-CN/docs/intro
https://www.ivorysql.org/zh-CN/docs/intro
https://www.ivorysql.org/zh-CN/docs/intro
https://www.ivorysql.org/zh-CN/docs/intro
https://www.ivorysql.org/zh-CN/docs/intro
https://www.ivorysql.org/zh-CN/docs/intro
https://www.ivorysql.org/zh-CN/docs/intro
https://github.com/IvorySQL/IvorySQL
https://github.com/IvorySQL/IvorySQL
https://github.com/IvorySQL/IvorySQL
https://github.com/IvorySQL/IvorySQL
https://github.com/IvorySQL/IvorySQL
mailto:renjiao@highgo.com

When it comes to C and C++ parts of IvorySQL, we try to follow PostgreSQL Coding Conventions. In addition
to that:

For C and Perl code, please run pgindent if necessary. We recommend using git diff --color when reviewing
your changes so that you don’t have any spurious whitespace issues in the code that you submit.

All new functionality that is contributed to IvorySQL should be covered by regression tests that are
contributed alongside it. If you are uncertain about how to test or document your work, please raise the
question on the ivorysql-hackers mailing list and the developer community will do its best to help you.

At the very minimum, you should always be running make installcheck-world to make sure that you’re not
breaking anything.

Changes applicable to upstream PostgreSQL

If the change you’re working on touches functionality that is common between PostgreSQL and IvorySQL,
you may be asked to forward-port it to PostgreSQL. This is not only so that we keep reducing the delta
between the two projects, but also so that any change that is relevant to PostgreSQL can benefit from a
much broader review of the upstream PostgreSQL community. In general, it is a good idea to keep both
codebases handy so you can be sure whether your changes may need to be forward-ported.

Patch submission

Once you are ready to share your work with the IvorySQL core team and the rest of the IvorySQL community,
you should push all the commits to a branch in your own repository forked from the official IvorySQL and
send us a pull request.

Patch review

A submitted pull request with passing validation checks is assumed to be available for peer review. Peer
review is the process that ensures that contributions to IvorySQL are of high quality and align well with the
road map and community expectations. Every member of the IvorySQL community is encouraged to review
pull requests and provide feedback. Since you don’t have to be a core team member to be able to do that,
we recommend following a stream of pull reviews to anybody who’s interested in becoming a long-term
contributor to IvorySQL.

One outcome of the peer review could be a consensus that you need to modify your pull request in certain
ways. GitHub allows you to push additional commits into a branch from which a pull request was sent.
Those additional commits will be then visible to all of the reviewers.

A peer review converges when it receives at least one +1 and no -1s votes from the participants. At that point,
you should expect one of the core team members to pull your changes into the project.

At any time during the patch review, you may experience delays based on the availability of reviewers and
core team members. Please be patient. That being said, don’t get discouraged either. If you’re not getting
expected feedback for a few days add a comment asking for updates on the pull request itself or send an
email to the mailing list.

Direct commits to the repository

On occasion, you will see core team members committing directly to the repository without going through
the pull request workflow. This is reserved for small changes only and the rule of thumb we use is this: if the
change touches any functionality that may result in a test failure, then it has to go through a pull request
workflow. If, on the other hand, the change is in the non-functional part of the codebase (such as fixing a
typo inside of a comment block) core team members can decide to just commit to the repository directly.

Submit Issue

287

First: Get into New issue page:
1 Enter IvorySQL official website:https://github.com/IvorySQL/IvorySQL

2 Click New issue

Second:Select the issue type

1 bug report

Title:

Bug Report
Describe the bug

\### IvorySQL Version
The version of IvorySQL you are using

\### OS Version (uname -a)
Operating system version(uname -a)

\### Configuration options (config.status --config)

\### Current Behavior

\### Expected behavior/code

\### Step to reproduce

\### Additional context that can be helpful for identifying the problem

2 Enhancement

Title:

288

Enhancement
Describe the functions that you expect to be strengthened

3 Feature Request

Title:

Feature Request
Describe the feature that you expect to be real

Third: Submit

Click submit new issue button. WELL DONE!

Contribute Code
First: Fork ivorysql.org warehouse

1 Open the ivorysql warehouse: https://github.com/IvorySQL/IvorySQL

2 Click the fork button in the upper right corner, Wait for the fork to finish

Second: Clone the warehouse to local

cd $working_dir # $working_dir can be replaced by the directory where you want to
place repo. For example, `cd ~/Documents/GitHub`

git clone git@github.com:$user/IvorySQL.git # `$user` can be replaced by your GitHub
ID.

Third: Create a new Branch

cd $working_dir/IvorySQL

git checkout -b new-branch-name

Fourth: Edit Document or Modify Code
You can modify the code in new-branch-name.

Fifth: Generate commit

Git add <file>

289

https://ivorysql.org/
https://github.com/IvorySQL/IvorySQL
https://github.com/IvorySQL/IvorySQL
https://github.com/IvorySQL/IvorySQL
https://github.com/IvorySQL/IvorySQL
https://github.com/IvorySQL/IvorySQL

Git commit -m “commit-message”

Sixth: Push the modification to the remote end

Git push -u origin new-branch-name

Seventh: Create a Pull Request
1 Open your warehouse: https://github.com/$user/IvorySQL ($user is your GitHub ID) .

2 Click Compare & pull request button and create a PR.

Submit PR
A PR submission should contain only one function or one bug. Prohibit submitting multiple functions at one
time.

First:Create a Pull Request
1 Open your warehouse: https://github.com/$user/IvorySQL ($user is your GitHub ID) 。

2 Click Compare & pull request button.

Second:Fill in PR information

Fix test
Describe the function

leave a comment
Give a detailed description of the submission function

Third:Submit PR
Click Create pull request button. WELL DONE!

Edit Documents
Preparation
(1) Download Markdown or Typora document editor.

(2) Check whether the source warehouse has updates. If there are updates, please update and synchronize
to your own warehouse first. Refer to the following steps to update to the latest version:

git remote

git fetch upstream

290

https://github.com/$user/docs-cn
https://github.com/$user/docs-cn

git merge upstream/main

git push

(3) Familiar with format [v3-2::23:::_pecification].

Where to Contribute
The IvorySQL community provides Chinese and English documents. English documents are saved in
IvorySQL document repository, Chinese documents are saved in i18n document repository. You can
contribute to one of them or both.

You can start from any of following to help improve the IvorySQL documents on the IvorySQL website:

(1) Prepare complete documents.

(2) Fix incorrect spelling and formatting (Punctuation, space, indentation, code block, etc) .

(3) Improper or outdated instructions corrected or updated.

(4) Add missing content (sentences, paragraphs, or new documents) .

(5) Translate document from English to Chinese, or from Chinese to English.

(6) Submit, reply and resolve document issues or document-i18n issues.

(7) (Advanced) View pull requests created by others.

Specification
The IvorySQL document is written in 'markdown'. To ensure the quality and consistency of the format,
certain Markdown rules should be followed when modifying and updating the document.

Markdown Specification

1 Titles are used incrementally from the first level, and skipping is prohibited. For example: The third level
title cannot be used directly under the first level title; The fourth level title cannot be used directly under the
second level title.

2 The title must use the ATX style uniformly. Indicate the title level by adding # before the title.

3 The leading symbol # of the title must be followed by a blank space.

4 The leading symbol "#" of the title can only be followed by one blank space and then the title content.
There can be no more than one space.

5 The title must appear at the beginning of a line, there must be no space before the # sign of the title.

6 Only Chinese and English question marks, back quotes, Chinese and English single and double quotes and
other symbols can appear at the end of the title. Other symbols such as colon, comma, period and
exclamation point cannot be used at the end of the title.

7 One line must be empty above the title.

8 The same title cannot appear continuously in the document. If the first level title is # TiDB architecture, the
next level title cannot be # # TiDB architecture. If it is not a continuous title, the title content can be repeated.

291

9 Only one first level title in document.

10 In general, except for TOC.md files, which can be indented by two spaces, other .md files must be
indented by four spaces by default foe each level of indentation.

11 Tab is not allowed in documents(including code blocks) . If indentation is required, spaces must be
uniformly used instead.

12 Continuous blank lines are prohibited.

13 Multiple spaces are not allowed after the block reference symbol > . Only one space can be used, followed
by the reference content.

14 When using a ordered list, it must start from 1 and increase in order.

15 When using a list, the identifier (+, -, * or number) of each list item can only be left blank, followed by the
list content.

16 The list (includeing ordered and unordered lists) must be empty before and after each line.

17 There must be one blank line before and after the code block.

18 Exposed URLs are prohibited in documents. If you want users to click and open the URL directly, wrap the
URL with a pair of angle brackets (<URL>) . If the exposed URL must be used due to special circumstances,
and the user does not need to open it by clicking, a pair of back quatation marks (URL) will be used to wrap
the URL.

19 When using bold, italic and other emphasis effects, redundant spaces are prohibited in the emphasis
identifier, such as text .

20 No extra space is allowed in the code block wrapped by a single backquote, such as ` text `.

21 No extra spaces are allowed on both sides of the link text, such as [Link](https://www.example.com/)

22 The link must have a link path. [Empty link]() and [empty link](#) are not allowed.

Example
1 Titles are used incrementally from the first level, and skipping is prohibited.

Heading 1
Heading 3

We skipped out a 2nd level heading in this document

2 The title must use the ATX style uniformly. Indicate the title level by adding # before the title.

Heading 1
Heading 2
Heading 3
Heading 4
Another Heading 2

292

https://www.example.com/

Another Heading 3

3 The leading symbol # of the title must be followed by a blank space. Multiple spaces after # are prohibited,
and spaces before # are prohibited.

Incorrect Example:

Heading 1
Heading 2

Correct Example:

Heading 1
Heading 2

4 Only Chinese and English question marks, back quotes, Chinese and English single and double quotes and
other symbols can appear at the end of the title.

Incorrect Example:

This is a heading.

Correct Example:

This is a heading

5 One line must be empty above the title.

Incorrect Example:

Heading 1
Some text
Some more text## Heading 2

Correct Example:

Heading 1
Some text
Some more text

Heading 2

6 he same title cannot appear continuously in the document. If the first level title is # TiDB architecture, the
next level title cannot be ## TiDB architecture. If it is not a continuous title, the title content can be repeated.

Incorrect Example:

293

Some text

Some text

Correct Example:

Some text

Some more text

7 Only one first level title in document.

Incorrect Example:

Top level heading

Another top-level heading

Correct Example:

Title

Heading

Another heading

8 In general, except for TOC.md files, which can be indented by two spaces, other .md files must be indented
by four spaces by default foe each level of indentation.

Incorrect Example:

* List item
 * Nested list item indented by 3 spaces

Correct Example:

* List item
 * Nested list item indented by 4 spaces

9 Tab is not allowed in documents(including code blocks) . If indentation is required, spaces must be
uniformly used instead.

Incorrect Example:

Some text

294

 * hard tab character used to indent the list item

Correct Example:

Some text
 * Spaces used to indent the list item instead

10 Continuous blank lines are prohibited.

Incorrect Example:

Some text here

Some more text here

Correct Example:

Some text here

Some more text here

11 Multiple spaces are not allowed after the block reference symbol > . Only one space can be used, followed
by the reference content.

Incorrect Example:

> This is a blockquote with bad indentation> there should only be one.

Correct Example:

> This is a blockquote with correct> indentation.

12 When using a ordered list, it must start from 1 and increase in order.

Incorrect Example:

1. Do this.
1. Do that.
1. Done.

0. Do this.
1. Do that.
2. Done.

295

Correct Example:

1. Do this.
2. Do that.
3. Done.

13 When using a list, the identifier (+, -, * or number) of each list item can only be left blank, followed by the
list content.

Correct Example:

* Foo
* Bar
* Baz

1. Foo
 * Bar
1. Baz

14 The list (includeing ordered and unordered lists) must be empty before and after each line.

Incorrect Example:

Some text* Some* List

1. Some2. List

Some text

Correct Example:

Some text

* Some
* List

1. Some
2. List

Some text

15 There must be one blank line before and after the code block.

Incorrect Example:

296

Some text
```
Code block
```
```
Another code block
```
Some more text

Correct Example:

Some text

```
Code block
```

```
Another code block
```

Some more text

16 Exposed URLs are prohibited in documents. If you want users to click and open the URL directly, wrap the
URL with a pair of angle brackets (<URL>) . If the exposed URL must be used due to special circumstances,
and the user does not need to open it by clicking, a pair of back quatation marks (URL) will be used to wrap
the URL.

Incorrect Example:

For more information, see https://www.example.com/.

Correct Example:

For more information, see <https://www.example.com/>.

17 When using bold, italic and other emphasis effects, redundant spaces are prohibited in the emphasis
identifier, such as text .

Incorrect Example:

Here is some ** bold ** text.

Here is some * italic * text.

297

Here is some more __ bold __ text.

Here is some more _ italic _ text.

Correct Example:

Here is some **bold** text.

Here is some *italic* text.

Here is some more __bold__ text.

Here is some more _italic_ text.

18 No extra space is allowed in the code block wrapped by a single backquote, such as ` text `.

Incorrect Example:

some text
 some text

Correct Example:

some text

19 No extra spaces are allowed on both sides of the link text, such as [Link](https://www.example.com/) .
Incorrect Example:

[a link](https://www.example.com/)

Correct Example:

[a link](https://www.example.com/)

20 The link must have a link path. [Empty link]() and [empty link](#) are not allowed.

Incorrect Example:

[an empty link]()

[an empty fragment](#)

Correct Example:

298

https://www.example.com/

[a valid link](https://example.com/)

[a valid fragment](#fragment)

21 Code blocks in the document are wrapped with three backquote, and the use of indented four-space
code blocks is prohibited.

Incorrect Example:

Some text.

 # Indented code

More text.

Correct Example:

```ruby
# Fenced code
```

More text.

Environmental preparation
In order to test your modifications, you need to prepare the following environment.

• Node.js install
• Antora install

Please refer to Antora docs。

After installation, the following display on the terminal indicates successful installation.

Generate web pages
• Firstly, you need to know the location of the corresponding UI for the webpage, as shown in the

following figure:

299

https://docs.antora.org/antora/latest/

The UI templates for both Chinese and English web pages are basically the same, so when making
modifications, it is best to ensure that both templates are modified at the same time. After uploading the
modified UI to your personal Github, you can consider generating your modified web page locally.

IvorySQL Document Site is built by Antora. Before running Antora, remember to modify the corresponding
playbook.yml file.

After completing the above process, please run the command antora antora-playbook.yml --stacktrace
on the terminal, and then patiently wait. After the successful operation is completed, you can view the
webpage you have generated.

You can start uploading to our ivorysql_web, the process of submitting PR is the same as before. Thank you
for your contribution to the community _. We will consider whether to update the website after the review.

300

Submit Blog
Preparation
1 Download Markdown or Typora .

2 Check whether the source warehouse (https://github.com/IvorySQL/Ivory-www) has updates. If there are
updates, please update and synchronize to your own warehouse first. Refer to the following steps to update
to the latest version:

Download source code
git clone https://github.com/IvorySQL/Ivory-www.git
Synchronize updates warehouse
git pull

3 Familiar with format ([v3-2::23:::_specification_2])

Where to Congtribute
The IvorySQL community provides Chinese and English documents. English documents are saved in
IvorySQL document repository, Chinese documents are saved in i18n document repository. You can
contribute to one of them or both.

How to Contribute
Let’s take a quick look at the information about the maintenance of the IvorySQL blog before contributing.
It is helpful for you to submit blog and to be a contributor.

(1) Clone code to local warehouse

git clone https://github.com/IvorySQL/Ivory-www.git

(2) Create a branch

git checkout -b <branch-name>

(3) Create a directory of your own articles in the blog directory, and please name your own directory
according to the ([Specification](#7.4 Specification)) .

Make English blog directory and files
cd Ivory-www/blog
mkdir <YEAR-MONTH-DAY-title>
cd <YEAR-MONTH-DAY-title>
touch index.md
Make Chinese blog directory and files
cd Ivory-www/i18n/zh-CN/docusaurus-plugin-content-blog
mkdir <YEAR-MONTH-DAY-title>
cd <YEAR-MONTH-DAY-title>

301

https://markdown.com.cn/tools.html#%E7%BC%96%E8%BE%91%E5%99%A8
https://typoraio.cn/
https://github.com/IvorySQL/Ivory-www
https://github.com/IvorySQL/Ivory-www
https://github.com/IvorySQL/Ivory-www
https://github.com/IvorySQL/Ivory-www
https://github.com/IvorySQL/Ivory-www

touch index.md

(4) Write the blog to publish in index.md, put the required pictures in the blog in the same directory as
index.md.

(5) Submit Blog

git add <file-path>
git commit -m "<message>"
git push origin <branch-name>:<branch-name>

Specification

Submit specifications

(1) Format of folder naming: year-month-day-foldername

Example: 2022-1-28-ivorysql-arrived

(2) File property is index.md

(3) Picture property is .png, and put the pictures to be uploaded into the folder to be submitted in advance.

Notice:The name of every picture is unique and cannot be repeated.

Example: po-one.png

Write blog

Blogs are written in markdown or Typora, you can understand the design of blog by reading Blog |
Docusaurus.

(1) The header of blog includes the following information:

slug: IvorySQL
title: Welcome to IvorySQL community
authors: [official]
authorTwitter: IvorySql
tags: [IvorySQL, Welcome, Database, Join Us]

Prompt:You can copy the above template to your file and edit it.

Notice:1) Add one space after slug, title, authors, tags.

2) The name of every slug is unique, the Chinese and English versions of the same blog can be the same.

(2) Text format

The text paragraph title is h2/"Second level title";

302

https://docusaurus.io/zh-CN/docs/blog
https://docusaurus.io/zh-CN/docs/blog

The body uses the default font size.

(3) Naming format of inserted pictures

[Hello](Hello-banner.png)

(4) Naming format of inserted hyperlink

[name](link)

Github page Download source code and published packages.

Website Contribution Guide
IvorySQL Document Site uses Antora to build. Also, IvorySQL Document Site is open source. It consists of
three parts, such as ivorysql_docs, ivorysql_web and ivory-doc-builder.

Welcome everyone who is willing to participate in open source work to join us, and remember to follow our
code of conduct _.

How to Contribute
Due to the fact that IvorySQL Document Site is all hosted on Github, this allows any users to fork our
document repository into their personal repository, make modifications to it, and then submit a PR. After
being reviewed by our open source team, the modifications can be updated to our Document Site.

In order to achieve the goat of correcting document errors more conveniently, you first need to establish a
personal warehouse according to the size you want to update. As follows:

• If you want to modify the existing content or add a new page, you only need to fork ivorysql_docs to
your personal repository.

• If you want to participate more deeply in the construction of IvorySQL Document Site, in addition to the
ivorysql_docs, you also need to fork ivorysql_web and ivory-doc-builder to your personal repository.

Modify Content
This section will introduce the process of modifying webpage content after discovering that it is
inappropriate.

• In the upper right corner of a webpage with incorrect content, there is a button called edit this page,
click on the button. As shown in the figure:

• After clicking, it will redirect to the editing page where we store the current page source .adoc file. Please
modify the content in the Asciidoc format. As shown in the figure:

303

https://github.com/IvorySQL/
https://docs.ivorysql.org
https://antora.org/
https://github.com/IvorySQL/ivorysql_docs
https://github.com/IvorySQL/ivorysql_web
https://github.com/IvorySQL/ivory-doc-builder
https://github.com/IvorySQL/ivorysql_docs
https://github.com/IvorySQL/ivorysql_web
https://github.com/IvorySQL/ivory-doc-builder

• After editing is completed. As shown in the figure:

• After confirming the update. As shown in the figure:

304

• Next, the relevant person of the open source team will be responsible for reviewing the content you
submitted. After the review is completed, the updates you submitted will appear on the corresponding
page.

Add Page
This section will introduce how to add new page components to a website, and the modifications involved
in adding new pages mainly include the following:

• Add the .adoc file in the CN/modules/ROOT/pages/vX.X.
• Modify the CN/modules/ROOT/nav.adoc. If the modification involves modifying or adding images, please

modify the images in images.
• Add the .adoc file in the EN/modules/ROOT/pages/vX.X.
• Modify the EN/modules/ROOT/nav.adoc. If the modification involves modifying or adding images, please

modify the images in images.
1. Firstly, you need to download the warehouse that you fork from IvorySQL to your personal

computer.

git clone https://github.com/$username$/ivorysql_docs.git

2. Then, place the .adoc file to be added in the correct directory, remembering that both Chinese and
English files should be prepared (Chinese and English files should have the same name), and each
file should be placed in the correct directory. At the same time, modify the corresponding nav.adoc
file (the modification method can refer to the existing content of the file).

3. After the above modifications are completed, submit them to the personal warehouse first.

git add .
git commit -m "$describe your change$"
git push

4. Afterwards, submit the PR as follows

305

Test
If you are not satisfied with simply submitting on the webpage or only modifying the webpage content, or if
you want to modify the webpage UI, this section will help you.

Before reading this section, you need to confirm whether your Github personal repository has forked
ivorysql_docs, ivorysql_web and ivory-doc-builder.

Deploy web pages
The deployment of web pages is currently the responsibility of the open-source team. We value every
submission and issue, so please do not worry about your contribution to the community being buried.

Tip
If you don’t have much time, you can send an email to ivorysql-docs@ivorysql.org. We will have dedicated
staff to handle every your letter, and we looking forward to hearing from you.

306

https://github.com/IvorySQL/ivorysql_docs
https://github.com/IvorySQL/ivorysql_web
https://github.com/IvorySQL/ivory-doc-builder

Tool Reference
List of tools
This part contains reference information for IvorySQL client applications and utilities. Not all of these
commands are of general utility; some might require special privileges. The common feature of these
applications is that they can be run on any host, independent of where the database server resides.

When specified on the command line, user and database names have their case preserved — the presence
of spaces or special characters might require quoting. Table names and other identifiers do not have their
case preserved, except where documented, and might require quoting.

category Tool name Description
Client Applications clusterdb clusterdb is a utility for reclustering

tables in a IvorySQL database. It
finds tables that have previously
been clustered, and clusters them
again on the same index that was
last used. Tables that have never
been clustered are not
affected.clusterdb is a wrapper
around the SQL command
CLUSTER. There is no effective
difference between clustering
databases via this utility and via
other methods for accessing the
server.

createdb createdb creates a new IvorySQL
database.Normally, the database
user who executes this command
becomes the owner of the new
database. However, a different
owner can be specified via the -O
option, if the executing user has
appropriate privileges.createdb is
a wrapper around the SQL
command CREATE DATABASE.
There is no effective difference
between creating databases via
this utility and via other methods
for accessing the server.

createuser createuser creates a new IvorySQL
user (or more precisely, a role).
Only superusers and users with
CREATEROLE privilege can create
new users, so createuser must be
invoked by someone who can
connect as a superuser or a user
with CREATEROLE privilege.

307

dropdb dropdb destroys an existing
IvorySQL database. The user who
executes this command must be a
database superuser or the owner
of the database.dropdb is a
wrapper around the SQL
command DROP DATABASE. There is
no effective difference between
dropping databases via this utility
and via other methods for
accessing the server.

dropuser dropuser removes an existing
IvorySQL user. Only superusers
and users with the CREATEROLE
privilege can remove IvorySQL
users. (To remove a superuser, you
must yourself be a
superuser.)dropuser is a wrapper
around the SQL command DROP
ROLE. There is no effective
difference between dropping users
via this utility and via other
methods for accessing the server.

ecpg ecpg is the embedded SQL
preprocessor for C programs. It
converts C programs with
embedded SQL statements to
normal C code by replacing the
SQL invocations with special
function calls. The output files can
then be processed with any C
compiler tool chain.ecpg will
convert each input file given on
the command line to the
corresponding C output file. If an
input file name does not have any
extension, .pgc is assumed. The
file’s extension will be replaced
by .c to construct the output file
name. But the output file name
can be overridden using the -o
option.If an input file name is just -
, ecpg reads the program from
standard input (and writes to
standard output, unless that is
overridden with -o).This reference
page does not describe the
embedded SQL language.

pg_amcheck pg_amcheck supports running
amcheck's corruption checking
functions against one or more
databases, with options to select
which schemas, tables and
indexes to check, which kinds of
checking to perform, and whether
to perform the checks in parallel,
and if so, the number of parallel
connections to establish and use.

308

https://www.IvorySQL.org/docs/current/sql-dropdatabase.html
https://www.IvorySQL.org/docs/current/sql-droprole.html
https://www.IvorySQL.org/docs/current/sql-droprole.html
https://www.IvorySQL.org/docs/current/amcheck.html

pg_basebackup pg_basebackup is used to take a
base backup of a running IvorySQL
database cluster. The backup is
taken without affecting other
clients of the database, and can be
used both for point-in-time
recovery and as the starting point
for a log-shipping or streaming-
replication standby
server.pg_basebackup makes an
exact copy of the database
cluster’s files, while making sure
the server is put into and out of
backup mode automatically.
Backups are always taken of the
entire database cluster; it is not
possible to back up individual
databases or database objects. For
selective backups, another tool
such as pg_dump must be
used.The backup is made over a
regular IvorySQL connection that
uses the replication protocol. The
connection must be made with a
user ID that has REPLICATION
permissions or is a superuser, and
pg_hba.conf must permit the
replication connection. The server
must also be configured with
max_wal_senders set high enough
to provide at least one walsender
for the backup plus one for WAL
streaming (if used).There can be
multiple pg_basebackup`s
running at the same time, but
it is usually better from a
performance point of view to
take only one backup, and copy
the result.pg_basebackup can
make a base backup from not
only a primary server but also
a standby. To take a backup
from a standby, set up the
standby so that it can accept
replication connections (that
is, set `max_wal_senders and
hot_standby, and configure its
pg_hba.conf appropriately). You
will also need to enable
full_page_writes on the primary.

309

https://www.IvorySQL.org/docs/current/app-pgdump.html
https://www.IvorySQL.org/docs/current/auth-pg-hba-conf.html
https://www.IvorySQL.org/docs/current/runtime-config-replication.html#GUC-MAX-WAL-SENDERS
https://www.IvorySQL.org/docs/current/runtime-config-replication.html#GUC-HOT-STANDBY
https://www.IvorySQL.org/docs/current/runtime-config-wal.html#GUC-FULL-PAGE-WRITES

pgbench pgbench is a simple program for
running benchmark tests on
IvorySQL. It runs the same
sequence of SQL commands over
and over, possibly in multiple
concurrent database sessions, and
then calculates the average
transaction rate (transactions per
second). By default, pgbench tests
a scenario that is loosely based on
TPC-B, involving five SELECT,
UPDATE, and INSERT commands per
transaction. However, it is easy to
test other cases by writing your
own transaction script files.

pg_config The pg_config utility prints
configuration parameters of the
currently installed version of
IvorySQL. It is intended, for
example, to be used by software
packages that want to interface to
IvorySQL to facilitate finding the
required header files and libraries.

310

pg_dump pg_dump is a utility for backing up
a IvorySQL database. It makes
consistent backups even if the
database is being used
concurrently. pg_dump does not
block other users accessing the
database (readers or
writers).pg_dump only dumps a
single database. To back up an
entire cluster, or to back up global
objects that are common to all
databases in a cluster (such as
roles and tablespaces), use
pg_dumpall. Dumps can be
output in script or archive file
formats. Script dumps are plain-
text files containing the SQL
commands required to
reconstruct the database to the
state it was in at the time it was
saved. To restore from such a
script, feed it to psql. Script files
can be used to reconstruct the
database even on other machines
and other architectures; with some
modifications, even on other SQL
database products.The alternative
archive file formats must be used
with pg_restore to rebuild the
database. They allow pg_restore
to be selective about what is
restored, or even to reorder the
items prior to being restored. The
archive file formats are designed to
be portable across
architectures.When used with one
of the archive file formats and
combined with pg_restore,
pg_dump provides a flexible
archival and transfer mechanism.
pg_dump can be used to backup
an entire database, then
pg_restore can be used to
examine the archive and/or select
which parts of the database are to
be restored. The most flexible
output file formats are the
“custom” format (-Fc) and the
“directory” format (-Fd). They
allow for selection and reordering
of all archived items, support
parallel restoration, and are
compressed by default. The
“directory” format is the only
format that supports parallel
dumps.While running pg_dump,
one should examine the output for
any warnings (printed on standard
error), especially in light of the
limitations listed below.

311

https://www.IvorySQL.org/docs/current/app-pg-dumpall.html
https://www.IvorySQL.org/docs/current/app-psql.html
https://www.IvorySQL.org/docs/current/app-pgrestore.html

pg_dumpall pg_dumpall is a utility for writing
out (“dumping”) all IvorySQL
databases of a cluster into one
script file. The script file contains
SQL commands that can be used
as input to psql to restore the
databases. It does this by calling
pg_dump for each database in the
cluster. pg_dumpall also dumps
global objects that are common to
all databases, namely database
roles, tablespaces, and privilege
grants for configuration
parameters. (pg_dump does not
save these objects.)Since
pg_dumpall reads tables from all
databases you will most likely
have to connect as a database
superuser in order to produce a
complete dump. Also you will
need superuser privileges to
execute the saved script in order to
be allowed to add roles and create
databases.The SQL script will be
written to the standard output.
Use the -f/--file option or shell
operators to redirect it into a
file.pg_dumpall needs to connect
several times to the IvorySQL
server (once per database). If you
use password authentication it will
ask for a password each time. It is
convenient to have a ~/.pgpass
file in such cases.

pg_isready pg_isready is a utility for checking
the connection status of a
IvorySQL database server. The exit
status specifies the result of the
connection check.

312

https://www.IvorySQL.org/docs/current/app-psql.html
https://www.IvorySQL.org/docs/current/app-pgdump.html

pg_receivewal pg_receivewal is used to stream
the write-ahead log from a running
IvorySQL cluster. The write-ahead
log is streamed using the
streaming replication protocol,
and is written to a local directory
of files. This directory can be used
as the archive location for doing a
restore using point-in-time
recovery.pg_receivewal streams
the write-ahead log in real time as
it’s being generated on the
server, and does not wait for
segments to complete like
archive_command and
archive_library do. For this reason,
it is not necessary to set
archive_timeout when using
pg_receivewal.Unlike the WAL
receiver of a IvorySQL standby
server, pg_receivewal by default
flushes WAL data only when a WAL
file is closed. The option
--synchronous must be specified
to flush WAL data in real time.
Since pg_receivewal does not
apply WAL, you should not allow it
to become a synchronous standby
when synchronous_commit
equals remote_apply. If it does, it
will appear to be a standby that
never catches up, and will cause
transaction commits to block. To
avoid this, you should either
configure an appropriate value for
synchronous_standby_names, or
specify application_name for
pg_receivewal that does not
match it, or change the value of
synchronous_commit to something
other than remote_apply.The
write-ahead log is streamed over a
regular IvorySQL connection and
uses the replication protocol. The
connection must be made with a
user having REPLICATION
permissions or a superuser, and
pg_hba.conf must permit the
replication connection. The server
must also be configured with
max_wal_senders set high enough
to leave at least one session
available for the stream.

313

https://www.IvorySQL.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-COMMAND
https://www.IvorySQL.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-LIBRARY
https://www.IvorySQL.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-TIMEOUT
https://www.IvorySQL.org/docs/current/runtime-config-wal.html#GUC-SYNCHRONOUS-COMMIT
https://www.IvorySQL.org/docs/current/runtime-config-replication.html#GUC-SYNCHRONOUS-STANDBY-NAMES
https://www.IvorySQL.org/docs/current/runtime-config-replication.html#GUC-MAX-WAL-SENDERS

pg_recvlogical pg_recvlogical controls logical
decoding replication slots and
streams data from such replication
slots.It creates a replication-mode
connection, so it is subject to the
same constraints as
pg_receivewal, plus those for
logical replication .pg_recvlogical
has no equivalent to the logical
decoding SQL interface’s peek
and get modes. It sends replay
confirmations for data lazily as it
receives it and on clean exit. To
examine pending data on a slot
without consuming it, use
pg_logical_slot_peek_changes.

pg_restore pg_restore is a utility for restoring
a IvorySQL database from an
archive created by
[pg_dump](https://www.IvorySQL.
org/docs/current/app-
pgdump.html) in one of the non-
plain-text formats. It will issue the
commands necessary to
reconstruct the database to the
state it was in at the time it was
saved. The archive files also allow
pg_restore to be selective about
what is restored, or even to reorder
the items prior to being restored.
The archive files are designed to
be portable across
architectures.pg_restore can
operate in two modes. If a
database name is specified,
pg_restore connects to that
database and restores archive
contents directly into the
database. Otherwise, a script
containing the SQL commands
necessary to rebuild the database
is created and written to a file or
standard output. This script output
is equivalent to the plain text
output format of pg_dump. Some
of the options controlling the
output are therefore analogous to
pg_dump options.Obviously,
pg_restore cannot restore
information that is not present in
the archive file. For instance, if the
archive was made using the
“dump data as INSERT
commands” option, pg_restore
will not be able to load the data
using COPY statements.

314

https://www.IvorySQL.org/docs/current/app-pgreceivewal.html
https://www.IvorySQL.org/docs/current/functions-admin.html#FUNCTIONS-REPLICATION
https://www.IvorySQL.org/docs/current/app-pgdump.html
https://www.IvorySQL.org/docs/current/app-pgdump.html
https://www.IvorySQL.org/docs/current/app-pgdump.html
https://www.IvorySQL.org/docs/current/app-pgdump.html
https://www.IvorySQL.org/docs/current/app-pgdump.html
https://www.IvorySQL.org/docs/current/app-pgdump.html
https://www.IvorySQL.org/docs/current/app-pgdump.html
https://www.IvorySQL.org/docs/current/app-pgdump.html
https://www.IvorySQL.org/docs/current/app-pgdump.html

pg_verifybackup pg_verifybackup is used to check
the integrity of a database cluster
backup taken using pg_basebackup
against a backup_manifest
generated by the server at the time
of the backup. The backup must
be stored in the "plain" format; a
"tar" format backup can be
checked after extracting it.It is
important to note that the
validation which is performed by
pg_verifybackup does not and
cannot include every check which
will be performed by a running
server when attempting to make
use of the backup. Even if you use
this tool, you should still perform
test restores and verify that the
resulting databases work as
expected and that they appear to
contain the correct data. However,
pg_verifybackup can detect many
problems that commonly occur
due to storage problems or user
error.Backup verification proceeds
in four stages. First,
pg_verifybackup reads the
backup_manifest file. If that file
does not exist, cannot be read, is
malformed, or fails verification
against its own internal checksum,
pg_verifybackup will terminate
with a fatal error.

psql psql is a terminal-based front-end
to IvorySQL. It enables you to type
in queries interactively, issue them
to IvorySQL, and see the query
results. Alternatively, input can be
from a file or from command line
arguments. In addition, psql
provides a number of meta-
commands and various shell-like
features to facilitate writing scripts
and automating a wide variety of
tasks.

reindexdb reindexdb is a utility for rebuilding
indexes in a IvorySQL
database.reindexdb is a wrapper
around the SQL command
REINDEX. There is no effective
difference between reindexing
databases via this utility and via
other methods for accessing the
server.

315

https://www.IvorySQL.org/docs/current/sql-reindex.html

vacuumdb vacuumdb is a utility for cleaning a
IvorySQL database. vacuumdb will
also generate internal statistics
used by the IvorySQL query
optimizer.vacuumdb is a wrapper
around the SQL command VACUUM.
There is no effective difference
between vacuuming and analyzing
databases via this utility and via
other methods for accessing the
server.

Server Applications initdb(1) initdb creates a new IvorySQL
database cluster. A database
cluster is a collection of databases
that are managed by a single
server instance.Creating a
database cluster consists of
creating the directories in which
the database data will live,
generating the shared catalog
tables (tables that belong to the
whole cluster rather than to any
particular database), and creating
the postgres, template1, and
template0 databases. The
postgres database is a default
database meant for use by users,
utilities and third party
applications. template1 and
template0 are meant as source
databases to be copied by later
CREATE DATABASE commands.
template0 should never be
modified, but you can add objects
to template1, which by default will
be copied into databases created
later.Although initdb will attempt
to create the specified data
directory, it might not have
permission if the parent directory
of the desired data directory is
root-owned. To initialize in such a
setup, create an empty data
directory as root, then use chown to
assign ownership of that directory
to the database user account, then
su to become the database user to
run initdb.

316

https://www.IvorySQL.org/docs/current/sql-vacuum.html

Server Applications initdb(2) initdb must be run as the user
that will own the server process,
because the server needs to have
access to the files and directories
that initdb creates. Since the
server cannot be run as root, you
must not run initdb as root either.
(It will in fact refuse to do so.)For
security reasons the new cluster
created by initdb will only be
accessible by the cluster owner by
default. The --allow-group
-access option allows any user in
the same group as the cluster
owner to read files in the cluster.
This is useful for performing
backups as a non-privileged
user.initdb initializes the
database cluster’s default locale
and character set encoding. These
can also be set separately for each
database when it is created.
initdb determines those settings
for the template databases, which
will serve as the default for all
other databases. By default,
initdb uses the locale provider
libc, takes the locale settings from
the environment, and determines
the encoding from the locale
settings. This is almost always
sufficient, unless there are special
requirements.To choose a
different locale for the cluster, use
the option --locale. There are
also individual options --lc-* (see
below) to set values for the
individual locale categories. Note
that inconsistent settings for
different locale categories can give
nonsensical results, so this should
be used with care.Alternatively, the
ICU library can be used to provide
locale services. (Again, this only
sets the default for subsequently
created databases.) To select this
option, specify --locale
-provider=icu. To choose the
specific ICU locale ID to apply, use
the option --icu-locale. Note
that for implementation reasons
and to support legacy code,
initdb will still select and initialize
libc locale settings when the ICU
locale provider is used.When
initdb runs, it will print out the
locale settings it has chosen. If you
have complex requirements or
specified multiple options, it is
advisable to check that the result
matches what was intended.

317

pg_archivecleanup pg_archivecleanup is designed to
be used as an
archive_cleanup_command to clean
up WAL file archives when running
as a standby server
.pg_archivecleanup can also be
used as a standalone program to
clean WAL file archives.

pg_checksums pg_checksums checks, enables or
disables data checksums in a
IvorySQL cluster. The server must
be shut down cleanly before
running pg_checksums. When
verifying checksums, the exit
status is zero if there are no
checksum errors, and nonzero if at
least one checksum failure is
detected. When enabling or
disabling checksums, the exit
status is nonzero if the operation
failed.When verifying checksums,
every file in the cluster is scanned.
When enabling checksums, each
relation file block with a changed
checksum is rewritten in-place.
Disabling checksums only updates
the file pg_control.

pg_controldata pg_controldata prints information
initialized during initdb, such as
the catalog version. It also shows
information about write-ahead
logging and checkpoint
processing. This information is
cluster-wide, and not specific to
any one database.This utility can
only be run by the user who
initialized the cluster because it
requires read access to the data
directory. You can specify the data
directory on the command line, or
use the environment variable
PGDATA. This utility supports the
options -V and --version, which
print the pg_controldata version
and exit. It also supports options
-? and --help, which output the
supported arguments.

pg_ctl pg_ctl is a utility for initializing a
IvorySQL database cluster,
starting, stopping, or restarting the
IvorySQL database server
(postgres), or displaying the status
of a running server. Although the
server can be started manually,
pg_ctl encapsulates tasks such as
redirecting log output and
properly detaching from the
terminal and process group. It also
provides convenient options for
controlled shutdown.

318

https://www.IvorySQL.org/docs/current/app-postgres.html

pg_resetwal pg_resetwal clears the write-
ahead log (WAL) and optionally
resets some other control
information stored in the
pg_control file. This function is
sometimes needed if these files
have become corrupted. It should
be used only as a last resort, when
the server will not start due to such
corruption.After running this
command, it should be possible to
start the server, but bear in mind
that the database might contain
inconsistent data due to partially-
committed transactions. You
should immediately dump your
data, run initdb, and restore. After
restore, check for inconsistencies
and repair as needed.This utility
can only be run by the user who
installed the server, because it
requires read/write access to the
data directory. For safety reasons,
you must specify the data
directory on the command line.
pg_resetwal does not use the
environment variable PGDATA.If
pg_resetwal complains that it
cannot determine valid data for
pg_control, you can force it to
proceed anyway by specifying the
-f (force) option. In this case
plausible values will be substituted
for the missing data. Most of the
fields can be expected to match,
but manual assistance might be
needed for the next OID, next
transaction ID and epoch, next
multitransaction ID and offset, and
WAL starting location fields. These
fields can be set using the options
discussed below. If you are not
able to determine correct values
for all these fields, -f can still be
used, but the recovered database
must be treated with even more
suspicion than usual: an
immediate dump and restore is
imperative. Do not execute any
data-modifying operations in the
database before you dump, as any
such action is likely to make the
corruption worse.

319

pg_rewind(1) pg_rewind is a tool for
synchronizing a IvorySQL cluster
with another copy of the same
cluster, after the clusters' timelines
have diverged. A typical scenario is
to bring an old primary server back
online after failover as a standby
that follows the new primary.After
a successful rewind, the state of
the target data directory is
analogous to a base backup of the
source data directory. Unlike
taking a new base backup or using
a tool like rsync, pg_rewind does
not require comparing or copying
unchanged relation blocks in the
cluster. Only changed blocks from
existing relation files are copied; all
other files, including new relation
files, configuration files, and WAL
segments, are copied in full. As
such the rewind operation is
significantly faster than other
approaches when the database is
large and only a small fraction of
blocks differ between the
clusters.pg_rewind examines the
timeline histories of the source
and target clusters to determine
the point where they diverged, and
expects to find WAL in the target
cluster’s pg_wal directory
reaching all the way back to the
point of divergence. The point of
divergence can be found either on
the target timeline, the source
timeline, or their common
ancestor. In the typical failover
scenario where the target cluster
was shut down soon after the
divergence, this is not a problem,
but if the target cluster ran for a
long time after the divergence, its
old WAL files might no longer be
present. In this case, you can
manually copy them from the WAL
archive to the pg_wal directory, or
run pg_rewind with the -c option
to automatically retrieve them
from the WAL archive. The use of
pg_rewind is not limited to
failover, e.g., a standby server can
be promoted, run some write
transactions, and then rewound to
become a standby again.After
running pg_rewind, WAL replay
needs to complete for the data
directory to be in a consistent
state.

320

pg_rewind(2) When the target server is started
again it will enter archive recovery
and replay all WAL generated in
the source server from the last
checkpoint before the point of
divergence. If some of the WAL was
no longer available in the source
server when pg_rewind was run,
and therefore could not be copied
by the pg_rewind session, it must
be made available when the target
server is started. This can be done
by creating a recovery.signal file
in the target data directory and by
configuring a suitable
restore_command in
IvorySQL.conf.pg_rewind requires
that the target server either has the
wal_log_hints option enabled in
IvorySQL.conf or data checksums
enabled when the cluster was
initialized with initdb. Neither of
these are currently on by default.
full_page_writes must also be set
to on, but is enabled by default.

pg_test_fsync pg_test_fsync is intended to give
you a reasonable idea of what the
fastest wal_sync_method is on
your specific system, as well as
supplying diagnostic information
in the event of an identified I/O
problem. However, differences
shown by pg_test_fsync might not
make any significant difference in
real database throughput,
especially since many database
servers are not speed-limited by
their write-ahead logs.
pg_test_fsync reports average file
sync operation time in
microseconds for each
wal_sync_method, which can also
be used to inform efforts to
optimize the value of
commit_delay.

pg_test_timing pg_test_timing is a tool to
measure the timing overhead on
your system and confirm that the
system time never moves
backwards. Systems that are slow
to collect timing data can give less
accurate EXPLAIN ANALYZE results.

321

https://www.IvorySQL.org/docs/current/runtime-config-wal.html#GUC-RESTORE-COMMAND
https://www.IvorySQL.org/docs/current/runtime-config-wal.html#GUC-WAL-LOG-HINTS
https://www.IvorySQL.org/docs/current/runtime-config-wal.html#GUC-FULL-PAGE-WRITES
https://www.IvorySQL.org/docs/current/runtime-config-wal.html#GUC-WAL-SYNC-METHOD
https://www.IvorySQL.org/docs/current/runtime-config-wal.html#GUC-COMMIT-DELAY

pg_upgrade Major IvorySQL releases regularly
add new features that often
change the layout of the system
tables, but the internal data
storage format rarely changes.
pg_upgrade uses this fact to
perform rapid upgrades by
creating new system tables and
simply reusing the old user data
files. If a future major release ever
changes the data storage format in
a way that makes the old data
format unreadable, pg_upgrade
will not be usable for such
upgrades. (The community will
attempt to avoid such
situations.)pg_upgrade does its
best to make sure the old and new
clusters are binary-compatible,
e.g., by checking for compatible
compile-time settings, including
32/64-bit binaries. It is important
that any external modules are also
binary compatible, though this
cannot be checked by
pg_upgrade.

pg_waldump pg_waldump displays the write-
ahead log (WAL) and is mainly
useful for debugging or
educational purposes.This utility
can only be run by the user who
installed the server, because it
requires read-only access to the
data directory.

postgres postgres is the IvorySQL database
server. In order for a client
application to access a database it
connects (over a network or
locally) to a running postgres
instance. The postgres instance
then starts a separate server
process to handle the connection.

Client Applications
clusterdb

Synopsis

clusterdb [connection-option…] [--verbose | -v] [--table | -t table] … [dbname]

clusterdb` [*`connection-option`*...] [`--verbose` | `-v`] `--all` | `-a

Options
clusterdb accepts the following command-line arguments:

322

• -a --all

Cluster all databases.

• [-d] dbname dbname

Specifies the name of the database to be clustered, when -a / --all is not used. If this is not specified, the
database name is read from the environment variable PGDATABASE. If that is not set, the user name specified
for the connection is used. The dbname can be a connection string. If so, connection string parameters will
override any conflicting command line options.

• -e --echo

Echo the commands that clusterdb generates and sends to the server.

• -q --quiet

Do not display progress messages.

• -t table --table=table

Cluster table only. Multiple tables can be clustered by writing multiple -t switches.

• -v --verbose

Print detailed information during processing.

• -V --version

Print the clusterdb version and exit.

• -? --help

Show help about clusterdb command line arguments, and exit.clusterdb also accepts the following
command-line arguments for connection parameters:

• -h host --host=host

Specifies the host name of the machine on which the server is running. If the value begins with a slash, it is
used as the directory for the Unix domain socket.

• -p port --port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections.

• -U username --username=username

User name to connect as.

• -w --no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be useful in
batch jobs and scripts where no user is present to enter a password.

• -W --password

Force clusterdb to prompt for a password before connecting to a database.This option is never essential,
since clusterdb will automatically prompt for a password if the server demands password authentication.
However, clusterdb will waste a connection attempt finding out that the server wants a password. In some
cases it is worth typing -W to avoid the extra connection attempt.

323

https://www.IvorySQL.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

• --maintenance-db=dbname

Specifies the name of the database to connect to to discover which databases should be clustered, when -a
/ --all is used. If not specified, the postgres database will be used, or if that does not exist, template1 will
be used. This can be a connection string. If so, connection string parameters will override any conflicting
command line options. Also, connection string parameters other than the database name itself will be re-
used when connecting to other databases.

Environment
• PGDATABASE PGHOST PGPORT PGUSER

Default connection parameters

• PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other IvorySQL utilities, also uses the environment variables supported by libpq

Diagnostics
In case of difficulty, see CLUSTER and psql for discussions of potential problems and error messages. The
database server must be running at the targeted host. Also, any default connection settings and
environment variables used by the libpq front-end library will apply.

Examples
To cluster the database test:

$ clusterdb test

To cluster a single table foo in a database named xyzzy:

$ clusterdb --table=foo xyzzy

createdb
createdb — create a new IvorySQL database

Synopsis

createdb [connection-option…] [option…] [dbname [description]]

Options
createdb accepts the following command-line arguments:

• dbname

Specifies the name of the database to be created. The name must be unique among all IvorySQL databases
in this cluster. The default is to create a database with the same name as the current system user.

• description

Specifies a comment to be associated with the newly created database.

324

https://www.IvorySQL.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://www.IvorySQL.org/docs/current/sql-cluster.html
https://www.IvorySQL.org/docs/current/app-psql.html

• -D tablespace --tablespace=tablespace

Specifies the default tablespace for the database. (This name is processed as a double-quoted identifier.)

• -e --echo

Echo the commands that createdb generates and sends to the server.

• -E encoding --encoding=encoding

Specifies the character encoding scheme to be used in this database.

• -l locale --locale=locale

Specifies the locale to be used in this database. This is equivalent to specifying both --lc-collate and --lc
-ctype.

• --lc-collate=`locale`

Specifies the LC_COLLATE setting to be used in this database.

• --lc-ctype=locale

Specifies the LC_CTYPE setting to be used in this database.

• --icu-locale=`locale`

Specifies the ICU locale ID to be used in this database, if the ICU locale provider is selected.

• --locale-provider={libc|icu}

Specifies the locale provider for the database’s default collation.

• -O `owner` --owner=`owner`

Specifies the database user who will own the new database. (This name is processed as a double-quoted
identifier.)

• -S template --strategy=strategy

Specifies the database creation strategy. See CREATE DATABASE STRATEGY for more details.

• -T template --template=template

Specifies the template database from which to build this database. (This name is processed as a double-
quoted identifier.)

• -V --version

Print the createdb version and exit.

• -? --help

Show help about createdb command line arguments, and exit.

The options -D, -l, -E, -O, and -T correspond to options of the underlying SQL command CREATE DATABASE;
see there for more information about them.

createdb also accepts the following command-line arguments for connection parameters:

• -h host --host=host

Specifies the host name of the machine on which the server is running. If the value begins with a slash, it is

325

https://www.IvorySQL.org/docs/current/sql-createdatabase.html#CREATE-DATABASE-STRATEGY
https://www.IvorySQL.org/docs/current/sql-createdatabase.html

used as the directory for the Unix domain socket.

• -p port --port=port

Specifies the TCP port or the local Unix domain socket file extension on which the server is listening for
connections.

• -U username --username=username

User name to connect as.

• -w --no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be useful in
batch jobs and scripts where no user is present to enter a password.

• -W --password

Force createdb to prompt for a password before connecting to a database.This option is never essential,
since createdb will automatically prompt for a password if the server demands password authentication.
However, createdb will waste a connection attempt finding out that the server wants a password. In some
cases it is worth typing -W to avoid the extra connection attempt.

• --maintenance-db=`dbname`

Specifies the name of the database to connect to when creating the new database. If not specified, the
postgres database will be used; if that does not exist (or if it is the name of the new database being created),
template1 will be used. This can be a connection string. If so, connection string parameters will override any
conflicting command line options.

Environment
• PGDATABASE

If set, the name of the database to create, unless overridden on the command line.

• PGHOST PGPORT PGUSER

Default connection parameters. PGUSER also determines the name of the database to create, if it is not
specified on the command line or by PGDATABASE.

• PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other IvorySQL utilities, also uses the environment variables supported by libpq

Diagnostics
In case of difficulty, see CREATE DATABASE and psql for discussions of potential problems and error
messages. The database server must be running at the targeted host. Also, any default connection settings
and environment variables used by the libpq front-end library will apply.

Examples
To create the database demo using the default database server:

$ createdb demo

326

https://www.IvorySQL.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://www.IvorySQL.org/docs/current/sql-createdatabase.html
https://www.IvorySQL.org/docs/current/app-psql.html

To create the database demo using the server on host eden, port 5000, using the template0 template
database, here is the command-line command and the underlying SQL command:

$ createdb -p 5000 -h eden -T template0 -e demo
CREATE DATABASE demo TEMPLATE template0;

createuser
createuser — define a new IvorySQL user account

Synopsis

createuser [connection-option…] [option…] [username]

Description

createuser creates a new IvorySQL user (or more precisely, a role). Only superusers and users with
CREATEROLE privilege can create new users, so createuser must be invoked by someone who can connect as
a superuser or a user with CREATEROLE privilege.

If you wish to create a role with the SUPERUSER, REPLICATION, or BYPASSRLS privilege, you must connect as a
superuser, not merely with CREATEROLE privilege. Being a superuser implies the ability to bypass all access
permission checks within the database, so superuser access should not be granted lightly. CREATEROLE also
conveys very extensive privileges.

createuser is a wrapper around the SQL command CREATE ROLE. There is no effective difference between
creating users via this utility and via other methods for accessing the server.

Options
createuser accepts the following command-line arguments:

• username

Specifies the name of the IvorySQL user to be created.

• -c number --connection-limit=number

Set a maximum number of connections for the new user. The default is to set no limit.

• -d --createdb

The new user will be allowed to create databases.

• -D --no-createdb

The new user will not be allowed to create databases. This is the default.

• -e --echo

Echo the commands that createuser generates and sends to the server.

• -E --encrypted

This option is obsolete but still accepted for backward compatibility.

• -g role --role=role

Indicates role to which this role will be added immediately as a new member. Multiple roles to which this

327

https://www.IvorySQL.org/docs/current/role-attributes.html#ROLE-CREATION
https://www.IvorySQL.org/docs/current/sql-createrole.html

role will be added as a member can be specified by writing multiple -g switches.

• -i --inherit

The new role will automatically inherit privileges of roles it is a member of. This is the default.

• -I --no-inherit

The new role will not automatically inherit privileges of roles it is a member of.

• --interactive

Prompt for the user name if none is specified on the command line, and also prompt for whichever of the
options -d / -D, -r / -R, -s / -S is not specified on the command line.

• -l --login

The new user will be allowed to log in (that is, the user name can be used as the initial session user
identifier). This is the default.

• -L --no-login

The new user will not be allowed to log in. (A role without login privilege is still useful as a means of
managing database permissions.)

• -P --pwprompt

If given, createuser will issue a prompt for the password of the new user. This is not necessary if you do not
plan on using password authentication.

• -r --createrole

The new user will be allowed to create, alter, drop, comment on, change the security label for, and grant or
revoke membership in other roles; that is, this user will have CREATEROLE privilege. See role creation for more
details about what capabilities are conferred by this privilege.

• -R --no-createrole

The new user will not be allowed to create new roles. This is the default.

• -s --superuser

The new user will be a superuser.

• -S --no-superuser

The new user will not be a superuser. This is the default.

• -V --version

Print the createuser version and exit.

• --replication

The new user will have the REPLICATION privilege, which is described more fully in the documentation for
CREATE ROLE.

• --no-replication

The new user will not have the REPLICATION privilege, which is described more fully in the documentation for
CREATE ROLE.

328

https://www.IvorySQL.org/docs/current/role-attributes.html#ROLE-CREATION
https://www.IvorySQL.org/docs/current/sql-createrole.html
https://www.IvorySQL.org/docs/current/sql-createrole.html

• -? --help

Show help about createuser command line arguments, and exit.

createuser also accepts the following command-line arguments for connection parameters:

• -h host --host=host

Specifies the host name of the machine on which the server is running. If the value begins with a slash, it is
used as the directory for the Unix domain socket.

• -p port --port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections.

• -U username --username=username

User name to connect as (not the user name to create).

• -w --no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be useful in
batch jobs and scripts where no user is present to enter a password.

• -W --password

Force createuser to prompt for a password (for connecting to the server, not for the password of the new
user).This option is never essential, since createuser will automatically prompt for a password if the server
demands password authentication. However, createuser will waste a connection attempt finding out that
the server wants a password. In some cases it is worth typing -W to avoid the extra connection attempt.

Environment
• PGHOST PGPORT PGUSER

Default connection parameters

• PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other IvorySQL utilities, also uses the environment variables supported by libpq

Diagnostics
In case of difficulty, see CREATE ROLE and psql for discussions of potential problems and error messages.
The database server must be running at the targeted host. Also, any default connection settings and
environment variables used by the libpq front-end library will apply.

Examples
To create a user joe on the default database server:

$ createuser joe

To create a user joe on the default database server with prompting for some additional attributes:

329

https://www.IvorySQL.org/docs/current/sql-createrole.html
https://www.IvorySQL.org/docs/current/app-psql.html

$ createuser --interactive joe
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n

To create the same user joe using the server on host eden, port 5000, with attributes explicitly specified,
taking a look at the underlying command:

$ createuser -h eden -p 5000 -S -D -R -e joe
CREATE ROLE joe NOSUPERUSER NOCREATEDB NOCREATEROLE INHERIT LOGIN;

To create the user joe as a superuser, and assign a password immediately:

$ createuser -P -s -e joe
Enter password for new role: xyzzy
Enter it again: xyzzy
CREATE ROLE joe PASSWORD 'md5b5f5ba1a423792b526f799ae4eb3d59e' SUPERUSER CREATEDB
CREATEROLE INHERIT LOGIN;

In the above example, the new password isn’t actually echoed when typed, but we show what was typed
for clarity. As you see, the password is encrypted before it is sent to the client.

dropdb
dropdb — remove a IvorySQL database

Synopsis

dropdb [connection-option…] [option…] dbname

Options
dropdb accepts the following command-line arguments:

• dbname

Specifies the name of the database to be removed.

• -e --echo

Echo the commands that dropdb generates and sends to the server.

• -f --force

Attempt to terminate all existing connections to the target database before dropping it. See DROP
DATABASE for more information on this option.

• -i --interactive

Issues a verification prompt before doing anything destructive.

• -V --version

330

https://www.IvorySQL.org/docs/current/sql-dropdatabase.html
https://www.IvorySQL.org/docs/current/sql-dropdatabase.html

Print the dropdb version and exit.

• --if-exists

Do not throw an error if the database does not exist. A notice is issued in this case.

• -? --help

Show help about dropdb command line arguments, and exit.

dropdb also accepts the following command-line arguments for connection parameters:

• -h host --host=host

Specifies the host name of the machine on which the server is running. If the value begins with a slash, it is
used as the directory for the Unix domain socket.

• -p port --port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections.

• -U username --username=username

User name to connect as.

• -w --no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be useful in
batch jobs and scripts where no user is present to enter a password.

• -W --password

Force dropdb to prompt for a password before connecting to a database.This option is never essential, since
dropdb will automatically prompt for a password if the server demands password authentication. However,
dropdb will waste a connection attempt finding out that the server wants a password. In some cases it is
worth typing -W to avoid the extra connection attempt.

• --maintenance-db=dbname

Specifies the name of the database to connect to in order to drop the target database. If not specified, the
postgres database will be used; if that does not exist (or is the database being dropped), template1 will be
used. This can be a connection string. If so, connection string parameters will override any conflicting
command line options.

Environment
• PGHOST PGPORT PGUSER

Default connection parameters

• PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other IvorySQL utilities, also uses the environment variables supported by libpq .

Diagnostics
In case of difficulty, see DROP DATABASE and psql for discussions of potential problems and error messages.
The database server must be running at the targeted host. Also, any default connection settings and

331

https://www.IvorySQL.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://www.IvorySQL.org/docs/current/sql-dropdatabase.html
https://www.IvorySQL.org/docs/current/app-psql.html

environment variables used by the libpq front-end library will apply.

Examples
To destroy the database demo on the default database server:

$ dropdb demo

To destroy the database demo using the server on host eden, port 5000, with verification and a peek at the
underlying command:

$ dropdb -p 5000 -h eden -i -e demo
Database "demo" will be permanently deleted.
Are you sure? (y/n) y
DROP DATABASE demo;

dropuser
dropuser — remove a IvorySQL user account

Synopsis

dropuser [connection-option…] [option…] [username]

Options
dropuser accepts the following command-line arguments:

• username

Specifies the name of the IvorySQL user to be removed. You will be prompted for a name if none is specified
on the command line and the -i / --interactive option is used.

• -e --echo

Echo the commands that dropuser generates and sends to the server.

• -i --interactive

Prompt for confirmation before actually removing the user, and prompt for the user name if none is
specified on the command line.

• -V --version

Print the dropuser version and exit.

• --if-exists

Do not throw an error if the user does not exist. A notice is issued in this case.

• -? --help

Show help about dropuser command line arguments, and exit.

dropuser also accepts the following command-line arguments for connection parameters:

332

• -h host --host=host

Specifies the host name of the machine on which the server is running. If the value begins with a slash, it is
used as the directory for the Unix domain socket.

• -p port --port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections.

• -U username --username=username

User name to connect as (not the user name to drop).

• -w --no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be useful in
batch jobs and scripts where no user is present to enter a password.

• -W --password

Force dropuser to prompt for a password before connecting to a database.This option is never essential,
since dropuser will automatically prompt for a password if the server demands password authentication.
However, dropuser will waste a connection attempt finding out that the server wants a password. In some
cases it is worth typing -W to avoid the extra connection attempt.

Environment
• PGHOST PGPORT PGUSER

Default connection parameters

• PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other IvorySQL utilities, also uses the environment variables supported by libpq

Diagnostics
In case of difficulty, see DROP ROLE and psql for discussions of potential problems and error messages. The
database server must be running at the targeted host. Also, any default connection settings and
environment variables used by the libpq front-end library will apply.

Examples
To remove user joe from the default database server:

$ dropuser joe

To remove user joe using the server on host eden, port 5000, with verification and a peek at the underlying
command:

$ dropuser -p 5000 -h eden -i -e joe
Role "joe" will be permanently removed.
Are you sure? (y/n) y

333

https://www.IvorySQL.org/docs/current/sql-droprole.html
https://www.IvorySQL.org/docs/current/app-psql.html

DROP ROLE joe;

ecpg
ecpg — embedded SQL C preprocessor

Synopsis

ecpg [option…] file…

Options
ecpg accepts the following command-line arguments:

• -c

Automatically generate certain C code from SQL code. Currently, this works for EXEC SQL TYPE.

• -C mode

Set a compatibility mode. mode can be INFORMIX, INFORMIX_SE, or ORACLE.

• -D `symbol`

Define a C preprocessor symbol.

• -h

Process header files. When this option is specified, the output file extension becomes .h not .c, and the
default input file extension is .pgh not .pgc. Also, the -c option is forced on.

• -i

Parse system include files as well.

• -I `directory`

Specify an additional include path, used to find files included via EXEC SQL INCLUDE. Defaults are . (current
directory), /usr/local/include, the IvorySQL include directory which is defined at compile time (default:
/usr/local/pgsql/include), and /usr/include, in that order.

• -o `filename`

Specifies that ecpg should write all its output to the given filename. Write -o - to send all output to standard
output.

• -r `option`

Selects run-time behavior. Option can be one of the following:`no_indicator`Do not use indicators but
instead use special values to represent null values. Historically there have been databases using this
approach.prepare`Prepare all statements before using them. Libecpg will keep a cache of
prepared statements and reuse a statement if it gets executed again. If the cache runs full,
libecpg will free the least used statement.`questionmarks Allow question mark as placeholder for
compatibility reasons. This used to be the default long ago.

• -t

Turn on autocommit of transactions. In this mode, each SQL command is automatically committed unless it
is inside an explicit transaction block. In the default mode, commands are committed only when EXEC SQL
COMMIT is issued.

334

• -v

Print additional information including the version and the "include" path.

• --version

Print the ecpg version and exit.

• -? --help

Show help about ecpg command line arguments, and exit.

Notes
When compiling the preprocessed C code files, the compiler needs to be able to find the ECPG header files in
the IvorySQL include directory. Therefore, you might have to use the -I option when invoking the compiler
(e.g., -I/usr/local/pgsql/include).

Programs using C code with embedded SQL have to be linked against the libecpg library, for example using
the linker options -L/usr/local/pgsql/lib -lecpg.

The value of either of these directories that is appropriate for the installation can be found out using
pg_config.

Examples
If you have an embedded SQL C source file named prog1.pgc, you can create an executable program using
the following sequence of commands:

ecpg prog1.pgc
cc -I/usr/local/pgsql/include -c prog1.c
cc -o prog1 prog1.o -L/usr/local/pgsql/lib -lecpg

pg_amcheck
pg_amcheck — checks for corruption in one or more IvorySQL databases

Synopsis

pg_amcheck [option…] [dbname]

Options
The following command-line options control what is checked:

• -a --all

Check all databases, except for any excluded via --exclude-database.

• -d pattern --database=pattern

Check databases matching the specified pattern, except for any excluded by --exclude-database. This
option can be specified more than once.

• -D pattern --exclude-database=pattern

Exclude databases matching the given pattern. This option can be specified more than once.

335

https://www.IvorySQL.org/docs/current/app-pgconfig.html
https://www.IvorySQL.org/docs/current/app-psql.html#APP-PSQL-PATTERNS
https://www.IvorySQL.org/docs/current/app-psql.html#APP-PSQL-PATTERNS

• -i pattern --index=pattern

Check indexes matching the specified pattern, unless they are otherwise excluded. This option can be
specified more than once.This is similar to the --relation option, except that it applies only to indexes, not
to other relation types.

• -I pattern --exclude-index=pattern

Exclude indexes matching the specified pattern. This option can be specified more than once.This is similar
to the --exclude-relation option, except that it applies only to indexes, not other relation types.

• -r `pattern` --relation=`pattern`

Check relations matching the specified pattern, unless they are otherwise excluded. This option can be
specified more than once.Patterns may be unqualified, e.g. myrel*, or they may be schema-qualified, e.g.
myschema*.myrel* or database-qualified and schema-qualified, e.g. mydb*.myscheam*.myrel*. A database-
qualified pattern will add matching databases to the list of databases to be checked.

• -R pattern --exclude-relation=pattern

Exclude relations matching the specified pattern. This option can be specified more than once.As with
--relation, the pattern may be unqualified, schema-qualified, or database- and schema-qualified.

• -s pattern --schema=pattern

Check tables and indexes in schemas matching the specified pattern, unless they are otherwise excluded.
This option can be specified more than once.To select only tables in schemas matching a particular pattern,
consider using something like --table=SCHEMAPAT.* --no-dependent-indexes. To select only indexes,
consider using something like --index=SCHEMAPAT..A schema pattern may be database-qualified. For
example, you may write --schema=mydb.myschema* to select schemas matching myschema* in databases
matching mydb*.

• -S pattern --exclude-schema=pattern

Exclude tables and indexes in schemas matching the specified pattern. This option can be specified more
than once.As with --schema, the pattern may be database-qualified.

• -t pattern --table=pattern

Check tables matching the specified pattern, unless they are otherwise excluded. This option can be
specified more than once.This is similar to the --relation option, except that it applies only to tables,
materialized views, and sequences, not to indexes.

• -T pattern --exclude-table=pattern

Exclude tables matching the specified pattern. This option can be specified more than once.This is similar
to the --exclude-relation option, except that it applies only to tables, materialized views, and sequences,
not to indexes.

• --no-dependent-indexes

By default, if a table is checked, any btree indexes of that table will also be checked, even if they are not
explicitly selected by an option such as --index or --relation. This option suppresses that behavior.

• --no-dependent-toast

By default, if a table is checked, its toast table, if any, will also be checked, even if it is not explicitly selected
by an option such as --table or --relation. This option suppresses that behavior.

• --no-strict-names

By default, if an argument to --database, --table, --index, or --relation matches no objects, it is a fatal
error. This option downgrades that error to a warning.

336

https://www.IvorySQL.org/docs/current/app-psql.html#APP-PSQL-PATTERNS
https://www.IvorySQL.org/docs/current/app-psql.html#APP-PSQL-PATTERNS
https://www.IvorySQL.org/docs/current/app-psql.html#APP-PSQL-PATTERNS
https://www.IvorySQL.org/docs/current/app-psql.html#APP-PSQL-PATTERNS
https://www.IvorySQL.org/docs/current/app-psql.html#APP-PSQL-PATTERNS
https://www.IvorySQL.org/docs/current/app-psql.html#APP-PSQL-PATTERNS
https://www.IvorySQL.org/docs/current/app-psql.html#APP-PSQL-PATTERNS
https://www.IvorySQL.org/docs/current/app-psql.html#APP-PSQL-PATTERNS
https://www.IvorySQL.org/docs/current/app-psql.html#APP-PSQL-PATTERNS

The following command-line options control checking of tables:

• --exclude-toast-pointers

By default, whenever a toast pointer is encountered in a table, a lookup is performed to ensure that it
references apparently-valid entries in the toast table. These checks can be quite slow, and this option can be
used to skip them.

• --on-error-stop

After reporting all corruptions on the first page of a table where corruption is found, stop processing that
table relation and move on to the next table or index.Note that index checking always stops after the first
corrupt page. This option only has meaning relative to table relations.

• --skip=`option`

If all-frozen is given, table corruption checks will skip over pages in all tables that are marked as all frozen.If
all-visible is given, table corruption checks will skip over pages in all tables that are marked as all
visible.By default, no pages are skipped. This can be specified as none, but since this is the default, it need
not be mentioned.

• --startblock=`block`

Start checking at the specified block number. An error will occur if the table relation being checked has fewer
than this number of blocks. This option does not apply to indexes, and is probably only useful when
checking a single table relation. See --endblock for further caveats.

• --endblock=`block`

End checking at the specified block number. An error will occur if the table relation being checked has fewer
than this number of blocks. This option does not apply to indexes, and is probably only useful when
checking a single table relation. If both a regular table and a toast table are checked, this option will apply to
both, but higher-numbered toast blocks may still be accessed while validating toast pointers, unless that is
suppressed using --exclude-toast-pointers.

The following command-line options control checking of B-tree indexes:

• --heapallindexed

For each index checked, verify the presence of all heap tuples as index tuples in the index using amcheck's
heapallindexed option.

• --parent-check

For each btree index checked, use amcheck's bt_index_parent_check function, which performs additional
checks of parent/child relationships during index checking.The default is to use amcheck’s bt_index_check
function, but note that use of the --rootdescend option implicitly selects bt_index_parent_check.

• --rootdescend

For each index checked, re-find tuples on the leaf level by performing a new search from the root page for
each tuple using amcheck's rootdescend option.Use of this option implicitly also selects the --parent-check
option.This form of verification was originally written to help in the development of btree index features. It
may be of limited use or even of no use in helping detect the kinds of corruption that occur in practice. It
may also cause corruption checking to take considerably longer and consume considerably more resources
on the server.

Warning
The extra checks performed against B-tree indexes when the --parent-check option or the --rootdescend
option is specified require relatively strong relation-level locks. These checks are the only checks that will
block concurrent data modification from INSERT, UPDATE, and DELETE commands.

337

https://www.IvorySQL.org/docs/current/amcheck.html
https://www.IvorySQL.org/docs/current/amcheck.html
https://www.IvorySQL.org/docs/current/amcheck.html

The following command-line options control the connection to the server:

• -h hostname --host=hostname

Specifies the host name of the machine on which the server is running. If the value begins with a slash, it is
used as the directory for the Unix domain socket.

• -p port --port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections.

• -U --username=username

User name to connect as.

• -w --no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be useful in
batch jobs and scripts where no user is present to enter a password.

• -W --password

Force pg_amcheck to prompt for a password before connecting to a database.This option is never essential,
since pg_amcheck will automatically prompt for a password if the server demands password authentication.
However, pg_amcheck will waste a connection attempt finding out that the server wants a password. In
some cases it is worth typing -W to avoid the extra connection attempt.

• --maintenance-db=dbname

Specifies a database or connection string to be used to discover the list of databases to be checked. If
neither --all nor any option including a database pattern is used, no such connection is required and this
option does nothing. Otherwise, any connection string parameters other than the database name which are
included in the value for this option will also be used when connecting to the databases being checked. If
this option is omitted, the default is postgres or, if that fails, template1.

Other options are also available:

• -e --echo

Echo to stdout all SQL sent to the server.

• -j `num` --jobs=`num`

Use num concurrent connections to the server, or one per object to be checked, whichever is less.The default
is to use a single connection.

• -P --progress

Show progress information. Progress information includes the number of relations for which checking has
been completed, and the total size of those relations. It also includes the total number of relations that will
eventually be checked, and the estimated size of those relations.

• -v --verbose

Print more messages. In particular, this will print a message for each relation being checked, and will
increase the level of detail shown for server errors.

• -V --version

Print the pg_amcheck version and exit.

338

https://www.IvorySQL.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

• --install-missing --install-missing=`schema`

Install any missing extensions that are required to check the database(s). If not yet installed, each
extension’s objects will be installed into the given schema, or if not specified into schema pg_catalog.At
present, the only required extension is amcheck.

• -? --help

Show help about pg_amcheck command line arguments, and exit.

pg_basebackup
pg_basebackup — take a base backup of a IvorySQL cluster

Synopsis

pg_basebackup [option…]

Options
The following command-line options control the location and format of the output:

• -D directory --pgdata=directory

Sets the target directory to write the output to. pg_basebackup will create this directory (and any missing
parent directories) if it does not exist. If it already exists, it must be empty.When the backup is in tar format,
the target directory may be specified as - (dash), causing the tar file to be written to stdout.This option is
required.

• -F format --format=format

Selects the format for the output. format can be one of the following: p plain Write the output as plain files,
with the same layout as the source server’s data directory and tablespaces. When the cluster has no
additional tablespaces, the whole database will be placed in the target directory. If the cluster contains
additional tablespaces, the main data directory will be placed in the target directory, but all other
tablespaces will be placed in the same absolute path as they have on the source server. (See --tablespace
-mapping to change that.)This is the default format. t tar Write the output as tar files in the target directory.
The main data directory’s contents will be written to a file named base.tar, and each other tablespace will
be written to a separate tar file named after that tablespace’s OID.If the target directory is specified as -
(dash), the tar contents will be written to standard output, suitable for piping to (for example) gzip. This is
only allowed if the cluster has no additional tablespaces and WAL streaming is not used.

• -R --write-recovery-conf

Creates a standby.signal file and appends connection settings to the IvorySQL.auto.conf file in the target
directory (or within the base archive file when using tar format). This eases setting up a standby server using
the results of the backup.The IvorySQL.auto.conf file will record the connection settings and, if specified,
the replication slot that pg_basebackup is using, so that streaming replication will use the same settings
later on.

• -t target --target=target

Instructs the server where to place the base backup. The default target is client, which specifies that the
backup should be sent to the machine where pg_basebackup is running. If the target is instead set to
server:/some/path, the backup will be stored on the machine where the server is running in the /some/path
directory. Storing a backup on the server requires superuser privileges or having privileges of the
pg_write_server_files role. If the target is set to blackhole, the contents are discarded and not stored
anywhere. This should only be used for testing purposes, as you will not end up with an actual backup.Since
WAL streaming is implemented by pg_basebackup rather than by the server, this option cannot be used
together with -Xstream. Since that is the default, when this option is specified, you must also specify either
-Xfetch or -Xnone.

339

https://www.IvorySQL.org/docs/current/amcheck.html
https://www.IvorySQL.org/docs/current/warm-standby.html#FILE-STANDBY-SIGNAL

• -T olddir=newdir --tablespace-mapping=olddir=newdir

Relocates the tablespace in directory olddir to newdir during the backup. To be effective, olddir must
exactly match the path specification of the tablespace as it is defined on the source server. (But it is not an
error if there is no tablespace in olddir on the source server.) Meanwhile newdir is a directory in the receiving
host’s filesystem. As with the main target directory, newdir need not exist already, but if it does exist it must
be empty. Both olddir and newdir must be absolute paths. If either path needs to contain an equal sign (=),
precede that with a backslash. This option can be specified multiple times for multiple tablespaces.If a
tablespace is relocated in this way, the symbolic links inside the main data directory are updated to point to
the new location. So the new data directory is ready to be used for a new server instance with all tablespaces
in the updated locations.Currently, this option only works with plain output format; it is ignored if tar format
is selected.

• --waldir=waldir

Sets the directory to write WAL (write-ahead log) files to. By default WAL files will be placed in the pg_wal
subdirectory of the target directory, but this option can be used to place them elsewhere. waldir must be an
absolute path. As with the main target directory, waldir need not exist already, but if it does exist it must be
empty. This option can only be specified when the backup is in plain format.

• -X method --wal-method=method

Includes the required WAL (write-ahead log) files in the backup. This will include all write-ahead logs
generated during the backup. Unless the method none is specified, it is possible to start a postmaster in the
target directory without the need to consult the log archive, thus making the output a completely
standalone backup.The following methods for collecting the write-ahead logs are supported: n none Don’t
include write-ahead logs in the backup. f fetch`The write-ahead log files are collected at the end
of the backup. Therefore, it is necessary for the source server’s wal_keep_size parameter to
be set high enough that the required log data is not removed before the end of the backup. If
the required log data has been recycled before it’s time to transfer it, the backup will fail
and be unusable.When tar format is used, the write-ahead log files will be included in the
`base.tar file.s stream`Stream write-ahead log data while the backup is being taken. This method
will open a second connection to the server and start streaming the write-ahead log in parallel
while running the backup. Therefore, it will require two replication connections not just one.
As long as the client can keep up with the write-ahead log data, using this method requires no
extra write-ahead logs to be saved on the source server.When tar format is used, the write-
ahead log files will be written to a separate file named `pg_wal.tar (if the server is a version
earlier than 10, the file will be named pg_xlog.tar).This value is the default.

• -z --gzip

Enables gzip compression of tar file output, with the default compression level. Compression is only
available when using the tar format, and the suffix .gz will automatically be added to all tar filenames.

• -Z level -Z method[:*detail*] --compress=level --compress=method[:*detail*]

Requests compression of the backup. If client or server is included, it specifies where the compression is to
be performed. Compressing on the server will reduce transfer bandwidth but will increase server CPU
consumption. The default is client except when --target is used. In that case, the backup is not being sent
to the client, so only server compression is sensible. When -Xstream, which is the default, is used, server-side
compression will not be applied to the WAL. To compress the WAL, use client-side compression, or specify
-Xfetch.The compression method can be set to gzip, lz4, zstd, or none for no compression. A compression
detail string can optionally be specified. If the detail string is an integer, it specifies the compression level.
Otherwise, it should be a comma-separated list of items, each of the form keyword or keyword=value.
Currently, the supported keywords are level and workers.If no compression level is specified, the default
compression level will be used. If only a level is specified without mentioning an algorithm, gzip
compression will be used if the level is greater than 0, and no compression will be used if the level is 0.When
the tar format is used with gzip, lz4, or zstd, the suffix .gz, .lz4, or .zst, respectively, will be automatically
added to all tar filenames. When the plain format is used, client-side compression may not be specified, but
it is still possible to request server-side compression. If this is done, the server will compress the backup for
transmission, and the client will decompress and extract it.When this option is used in combination with
-Xstream, pg_wal.tar will be compressed using gzip if client-side gzip compression is selected, but will not
be compressed if any other compression algorithm is selected, or if server-side compression is selected.

340

https://www.IvorySQL.org/docs/current/runtime-config-replication.html#GUC-WAL-KEEP-SIZE

The following command-line options control the generation of the backup and the invocation of the
program:

• -c {fast|spread} --checkpoint={fast|spread}

Sets checkpoint mode to fast (immediate) or spread (the default) .

• -C --create-slot

Specifies that the replication slot named by the --slot option should be created before starting the backup.
An error is raised if the slot already exists.

• -l label --label=label

Sets the label for the backup. If none is specified, a default value of “pg_basebackup base backup” will be
used.

• -n --no-clean

By default, when pg_basebackup aborts with an error, it removes any directories it might have created before
discovering that it cannot finish the job (for example, the target directory and write-ahead log directory). This
option inhibits tidying-up and is thus useful for debugging.Note that tablespace directories are not cleaned
up either way.

• -N --no-sync

By default, pg_basebackup will wait for all files to be written safely to disk. This option causes pg_basebackup
to return without waiting, which is faster, but means that a subsequent operating system crash can leave the
base backup corrupt. Generally, this option is useful for testing but should not be used when creating a
production installation.

• -P --progress

Enables progress reporting. Turning this on will deliver an approximate progress report during the backup.
Since the database may change during the backup, this is only an approximation and may not end at exactly
100%. In particular, when WAL log is included in the backup, the total amount of data cannot be estimated in
advance, and in this case the estimated target size will increase once it passes the total estimate without
WAL.

• -r rate --max-rate=rate

Sets the maximum transfer rate at which data is collected from the source server. This can be useful to limit
the impact of pg_basebackup on the server. Values are in kilobytes per second. Use a suffix of M to indicate
megabytes per second. A suffix of k is also accepted, and has no effect. Valid values are between 32 kilobytes
per second and 1024 megabytes per second.This option always affects transfer of the data directory.
Transfer of WAL files is only affected if the collection method is fetch.

• -S slotname --slot=slotname

This option can only be used together with -X stream. It causes WAL streaming to use the specified
replication slot. If the base backup is intended to be used as a streaming-replication standby using a
replication slot, the standby should then use the same replication slot name as primary_slot_name. This
ensures that the primary server does not remove any necessary WAL data in the time between the end of the
base backup and the start of streaming replication on the new standby.The specified replication slot has to
exist unless the option -C is also used.If this option is not specified and the server supports temporary
replication slots (version 10 and later), then a temporary replication slot is automatically used for WAL
streaming.

• -v --verbose

Enables verbose mode. Will output some extra steps during startup and shutdown, as well as show the exact
file name that is currently being processed if progress reporting is also enabled.

341

https://www.IvorySQL.org/docs/current/runtime-config-replication.html#GUC-PRIMARY-SLOT-NAME

• --manifest-checksums=algorithm

Specifies the checksum algorithm that should be applied to each file included in the backup manifest.
Currently, the available algorithms are NONE, CRC32C, SHA224, SHA256, SHA384, and SHA512. The default is
CRC32C.If NONE is selected, the backup manifest will not contain any checksums. Otherwise, it will contain a
checksum of each file in the backup using the specified algorithm. In addition, the manifest will always
contain a SHA256 checksum of its own contents. The SHA algorithms are significantly more CPU-intensive
than CRC32C, so selecting one of them may increase the time required to complete the backup.Using a SHA
hash function provides a cryptographically secure digest of each file for users who wish to verify that the
backup has not been tampered with, while the CRC32C algorithm provides a checksum that is much faster
to calculate; it is good at catching errors due to accidental changes but is not resistant to malicious
modifications. Note that, to be useful against an adversary who has access to the backup, the backup
manifest would need to be stored securely elsewhere or otherwise verified not to have been modified since
the backup was taken. pg_verifybackup can be used to check the integrity of a backup against the backup
manifest.

• --manifest-force-encode

Forces all filenames in the backup manifest to be hex-encoded. If this option is not specified, only non-UTF8
filenames are hex-encoded. This option is mostly intended to test that tools which read a backup manifest
file properly handle this case.

• --no-estimate-size

Prevents the server from estimating the total amount of backup data that will be streamed, resulting in the
backup_total column in the pg_stat_progress_basebackup view always being NULL.Without this option, the
backup will start by enumerating the size of the entire database, and then go back and send the actual
contents. This may make the backup take slightly longer, and in particular it will take longer before the first
data is sent. This option is useful to avoid such estimation time if it’s too long.This option is not allowed
when using --progress.

• --no-manifest

Disables generation of a backup manifest. If this option is not specified, the server will generate and send a
backup manifest which can be verified using pg_verifybackup. The manifest is a list of every file present in
the backup with the exception of any WAL files that may be included. It also stores the size, last modification
time, and an optional checksum for each file.

• --no-slot

Prevents the creation of a temporary replication slot for the backup.By default, if log streaming is selected
but no slot name is given with the -S option, then a temporary replication slot is created (if supported by the
source server).The main purpose of this option is to allow taking a base backup when the server has no free
replication slots. Using a replication slot is almost always preferred, because it prevents needed WAL from
being removed by the server during the backup.

• --no-verify-checksums

Disables verification of checksums, if they are enabled on the server the base backup is taken from.By
default, checksums are verified and checksum failures will result in a non-zero exit status. However, the base
backup will not be removed in such a case, as if the --no-clean option had been used. Checksum
verification failures will also be reported in the pg_stat_database view.

The following command-line options control the connection to the source server:

• -d connstr --dbname=connstr

Specifies parameters used to connect to the server, as a connection string; these will override any conflicting
command line options.The option is called --dbname for consistency with other client applications, but
because pg_basebackup doesn’t connect to any particular database in the cluster, any database name in
the connection string will be ignored.

342

https://www.IvorySQL.org/docs/current/app-pgverifybackup.html
https://www.IvorySQL.org/docs/current/app-pgverifybackup.html
https://www.IvorySQL.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-DATABASE-VIEW
https://www.IvorySQL.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

• -h host --host=host

Specifies the host name of the machine on which the server is running. If the value begins with a slash, it is
used as the directory for a Unix domain socket. The default is taken from the PGHOST environment variable, if
set, else a Unix domain socket connection is attempted.

• -p port --port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

• -s interval --status-interval=interval

Specifies the number of seconds between status packets sent back to the source server. Smaller values
allow more accurate monitoring of backup progress from the server. A value of zero disables periodic status
updates completely, although an update will still be sent when requested by the server, to avoid timeout-
based disconnects. The default value is 10 seconds.

• -U username --username=username

Specifies the user name to connect as.

• -w --no-password

Prevents issuing a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be useful in
batch jobs and scripts where no user is present to enter a password.

• -W --password

Forces pg_basebackup to prompt for a password before connecting to the source server.This option is never
essential, since pg_basebackup will automatically prompt for a password if the server demands password
authentication. However, pg_basebackup will waste a connection attempt finding out that the server wants
a password. In some cases it is worth typing -W to avoid the extra connection attempt.

Other options are also available:

• -V --version

Prints the pg_basebackup version and exits.

• -? --help

Shows help about pg_basebackup command line arguments, and exits.

Environment
This utility, like most other IvorySQL utilities, uses the environment variables supported by libpq .

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible values
are always, auto and never.

Notes
At the beginning of the backup, a checkpoint needs to be performed on the source server. This can take
some time (especially if the option --checkpoint=fast is not used), during which pg_basebackup will
appear to be idle.

The backup will include all files in the data directory and tablespaces, including the configuration files and
any additional files placed in the directory by third parties, except certain temporary files managed by
IvorySQL. But only regular files and directories are copied, except that symbolic links used for tablespaces
are preserved. Symbolic links pointing to certain directories known to IvorySQL are copied as empty

343

directories. Other symbolic links and special device files are skipped.

In plain format, tablespaces will be backed up to the same path they have on the source server, unless the
option --tablespace-mapping is used. Without this option, running a plain format base backup on the same
host as the server will not work if tablespaces are in use, because the backup would have to be written to the
same directory locations as the original tablespaces.

When tar format is used, it is the user’s responsibility to unpack each tar file before starting a IvorySQL
server that uses the data. If there are additional tablespaces, the tar files for them need to be unpacked in
the correct locations. In this case the symbolic links for those tablespaces will be created by the server
according to the contents of the tablespace_map file that is included in the base.tar file.

pg_basebackup works with servers of the same or an older major version.

pg_basebackup will preserve group permissions for data files if group permissions are enabled on the
source cluster.

Examples
To create a base backup of the server at mydbserver and store it in the local directory
/usr/local/pgsql/data:

$ pg_basebackup -h mydbserver -D /usr/local/pgsql/data

To create a backup of the local server with one compressed tar file for each tablespace, and store it in the
directory backup, showing a progress report while running:

$ pg_basebackup -D backup -Ft -z -P

To create a backup of a single-tablespace local database and compress this with bzip2:

$ pg_basebackup -D - -Ft -X fetch | bzip2 > backup.tar.bz2

(This command will fail if there are multiple tablespaces in the database.)

To create a backup of a local database where the tablespace in /opt/ts is relocated to ./backup/ts:

$ pg_basebackup -D backup/data -T /opt/ts=$(pwd)/backup/ts

To create a backup of a local server with one tar file for each tablespace compressed with gzip at level 9,
stored in the directory backup:

$ pg_basebackup -D backup -Ft --compress=gzip:9

pgbench
pgbench — run a benchmark test on IvorySQL

Synopsis

pgbench -i [option…] [dbname]

344

pgbench [option…] [dbname]

Caution
pgbench -i creates four tables pgbench_accounts, pgbench_branches, pgbench_history, and
pgbench_tellers, destroying any existing tables of these names. Be very careful to use another database if
you have tables having these names!

At the default “scale factor” of 1, the tables initially contain this many rows:

table # of rows

pgbench_branches 1
pgbench_tellers 10
pgbench_accounts 100000
pgbench_history 0

You can (and, for most purposes, probably should) increase the number of rows by using the -s (scale factor)
option. The -F (fillfactor) option might also be used at this point.

Once you have done the necessary setup, you can run your benchmark with a command that doesn’t
include -i, that is

pgbench [options] dbname

In nearly all cases, you’ll need some options to make a useful test. The most important options are -c
(number of clients), -t (number of transactions), -T (time limit), and -f (specify a custom script file). See
below for a full list.

Options
The following is divided into three subsections. Different options are used during database initialization and
while running benchmarks, but some options are useful in both cases.

Initialization Options
pgbench accepts the following command-line initialization arguments:

• dbname

Specifies the name of the database to test in. If this is not specified, the environment variable PGDATABASE is
used. If that is not set, the user name specified for the connection is used.

• -i --initialize

Required to invoke initialization mode.

• -I init_steps --init-steps=init_steps

Perform just a selected set of the normal initialization steps. init_steps specifies the initialization steps to
be performed, using one character per step. Each step is invoked in the specified order. The default is dtgvp.
The available steps are:`d` (Drop)Drop any existing pgbench tables.t (create Tables)Create the tables used
by the standard pgbench scenario, namely pgbench_accounts, pgbench_branches, pgbench_history, and
pgbench_tellers.g or G (Generate data, client-side or server-side)Generate data and load it into the standard
tables, replacing any data already present.With g (client-side data generation), data is generated in pgbench

345

client and then sent to the server. This uses the client/server bandwidth extensively through a COPY. pgbench
uses the FREEZE option with version 14 or later of IvorySQL to speed up subsequent VACUUM, unless
partitions are enabled. Using g causes logging to print one message every 100,000 rows while generating
data for the pgbench_accounts table.With G (server-side data generation), only small queries are sent from
the pgbench client and then data is actually generated in the server. No significant bandwidth is required for
this variant, but the server will do more work. Using G causes logging not to print any progress message while
generating data.The default initialization behavior uses client-side data generation (equivalent to g).v
(Vacuum)Invoke VACUUM on the standard tables.p (create Primary keys)Create primary key indexes on the
standard tables.f (create Foreign keys)Create foreign key constraints between the standard tables. (Note
that this step is not performed by default.)

• -F fillfactor --fillfactor= fillfactor

Create the pgbench_accounts, pgbench_tellers and pgbench_branches tables with the given fillfactor.
Default is 100.

• -n --no-vacuum

Perform no vacuuming during initialization. (This option suppresses the v initialization step, even if it was
specified in -I.)

• -q --quiet

Switch logging to quiet mode, producing only one progress message per 5 seconds. The default logging
prints one message each 100,000 rows, which often outputs many lines per second (especially on good
hardware).This setting has no effect if G is specified in -I.

• -s scale_factor --scale=scale_factor

Multiply the number of rows generated by the scale factor. For example, -s 100 will create 10,000,000 rows in
the pgbench_accounts table. Default is 1. When the scale is 20,000 or larger, the columns used to hold
account identifiers (aid columns) will switch to using larger integers (bigint), in order to be big enough to
hold the range of account identifiers.

• --foreign-keys

Create foreign key constraints between the standard tables. (This option adds the f step to the initialization
step sequence, if it is not already present.)

• --index-tablespace=index_tablespace

Create indexes in the specified tablespace, rather than the default tablespace.

• --partition-method=`NAME`

Create a partitioned pgbench_accounts table with NAME method. Expected values are range or hash. This
option requires that --partitions is set to non-zero. If unspecified, default is range.

• --partitions=NUM

Create a partitioned pgbench_accounts table with NUM partitions of nearly equal size for the scaled number of
accounts. Default is 0, meaning no partitioning.

• --tablespace=`tablespace`

Create tables in the specified tablespace, rather than the default tablespace.

• --unlogged-tables

Create all tables as unlogged tables, rather than permanent tables.

346

Benchmarking Options
pgbench accepts the following command-line benchmarking arguments:

• -b scriptname[@weight] --builtin=scriptname[@weight]

Add the specified built-in script to the list of scripts to be executed. Available built-in scripts are: tpcb-like,
simple-update and select-only. Unambiguous prefixes of built-in names are accepted. With the special
name list, show the list of built-in scripts and exit immediately.Optionally, write an integer weight after @ to
adjust the probability of selecting this script versus other ones. The default weight is 1. See below for details.

• -c clients --client=clients

Number of clients simulated, that is, number of concurrent database sessions. Default is 1.

• -C --connect

Establish a new connection for each transaction, rather than doing it just once per client session. This is
useful to measure the connection overhead.

• -d --debug

Print debugging output.

• -D varname=value --define=varname=value

Define a variable for use by a custom script (see below). Multiple -D options are allowed.

• -f filename[@weight] --file=filename[@weight]

Add a transaction script read from filename to the list of scripts to be executed.Optionally, write an integer
weight after @ to adjust the probability of selecting this script versus other ones. The default weight is 1. (To
use a script file name that includes an @ character, append a weight so that there is no ambiguity, for
example filen@me@1.) See below for details.

• -j threads --jobs=threads

Number of worker threads within pgbench. Using more than one thread can be helpful on multi-CPU
machines. Clients are distributed as evenly as possible among available threads. Default is 1.

• -l --log

Write information about each transaction to a log file. See below for details.

• -L limit --latency-limit=limit

Transactions that last more than limit milliseconds are counted and reported separately, as late.When
throttling is used (--rate=…), transactions that lag behind schedule by more than limit ms, and thus have
no hope of meeting the latency limit, are not sent to the server at all. They are counted and reported
separately as skipped.When the --max-tries option is used, a transaction which fails due to a serialization
anomaly or from a deadlock will not be retried if the total time of all its tries is greater than limit ms. To limit
only the time of tries and not their number, use --max-tries=0. By default, the option --max-tries is set to 1
and transactions with serialization/deadlock errors are not retried.

• -M querymode --protocol=querymode

Protocol to use for submitting queries to the server:`simple`: use simple query protocol. extended : use
extended query protocol. prepared : use extended query protocol with prepared statements.In the prepared
mode, pgbench reuses the parse analysis result starting from the second query iteration, so pgbench runs
faster than in other modes.The default is simple query protocol.

• -n --no-vacuum

347

Perform no vacuuming before running the test. This option is necessary if you are running a custom test
scenario that does not include the standard tables pgbench_accounts, pgbench_branches, pgbench_history,
and pgbench_tellers.

• -N --skip-some-updates

Run built-in simple-update script. Shorthand for -b simple-update.

• -P sec --progress=sec

Show progress report every sec seconds. The report includes the time since the beginning of the run, the
TPS since the last report, and the transaction latency average, standard deviation, and the number of failed
transactions since the last report. Under throttling (-R), the latency is computed with respect to the
transaction scheduled start time, not the actual transaction beginning time, thus it also includes the average
schedule lag time. When --max-tries is used to enable transaction retries after serialization/deadlock
errors, the report includes the number of retried transactions and the sum of all retries.

• -r --report-per-command

Report the following statistics for each command after the benchmark finishes: the average per-statement
latency (execution time from the perspective of the client), the number of failures, and the number of retries
after serialization or deadlock errors in this command. The report displays retry statistics only if the --max
-tries option is not equal to 1.

• -R rate --rate=rate

Execute transactions targeting the specified rate instead of running as fast as possible (the default). The rate
is given in transactions per second. If the targeted rate is above the maximum possible rate, the rate limit
won’t impact the results.The rate is targeted by starting transactions along a Poisson-distributed schedule
time line. The expected start time schedule moves forward based on when the client first started, not when
the previous transaction ended. That approach means that when transactions go past their original
scheduled end time, it is possible for later ones to catch up again.When throttling is active, the transaction
latency reported at the end of the run is calculated from the scheduled start times, so it includes the time
each transaction had to wait for the previous transaction to finish. The wait time is called the schedule lag
time, and its average and maximum are also reported separately. The transaction latency with respect to the
actual transaction start time, i.e., the time spent executing the transaction in the database, can be computed
by subtracting the schedule lag time from the reported latency.If --latency-limit is used together with
--rate, a transaction can lag behind so much that it is already over the latency limit when the previous
transaction ends, because the latency is calculated from the scheduled start time. Such transactions are not
sent to the server, but are skipped altogether and counted separately.A high schedule lag time is an
indication that the system cannot process transactions at the specified rate, with the chosen number of
clients and threads. When the average transaction execution time is longer than the scheduled interval
between each transaction, each successive transaction will fall further behind, and the schedule lag time will
keep increasing the longer the test run is. When that happens, you will have to reduce the specified
transaction rate.

• -s scale_factor --scale=scale_factor

Report the specified scale factor in pgbench’s output. With the built-in tests, this is not necessary; the
correct scale factor will be detected by counting the number of rows in the pgbench_branches table.
However, when testing only custom benchmarks (-f option), the scale factor will be reported as 1 unless this
option is used.

• -S --select-only

Run built-in select-only script. Shorthand for -b select-only.

• -t transactions --transactions=transactions

Number of transactions each client runs. Default is 10.

• -T seconds --time=seconds

348

Run the test for this many seconds, rather than a fixed number of transactions per client. -t and -T are
mutually exclusive.

• -v --vacuum-all

Vacuum all four standard tables before running the test. With neither -n nor -v, pgbench will vacuum the
pgbench_tellers and pgbench_branches tables, and will truncate pgbench_history.

• --aggregate-interval=`seconds`

Length of aggregation interval (in seconds). May be used only with -l option. With this option, the log
contains per-interval summary data, as described below.

• --failures-detailed

Report failures in per-transaction and aggregation logs, as well as in the main and per-script reports,
grouped by the following types:serialization failures;deadlock failures.

• --log-prefix=`prefix`

Set the filename prefix for the log files created by --log. The default is pgbench_log.

• --max-tries=`number_of_tries`

Enable retries for transactions with serialization/deadlock errors and set the maximum number of these
tries. This option can be combined with the --latency-limit option which limits the total time of all
transaction tries; moreover, you cannot use an unlimited number of tries (--max-tries=0) without --latency
-limit or --time. The default value is 1 and transactions with serialization/deadlock errors are not retried.

• --progress-timestamp

When showing progress (option -P), use a timestamp (Unix epoch) instead of the number of seconds since
the beginning of the run. The unit is in seconds, with millisecond precision after the dot. This helps compare
logs generated by various tools.

• --random-seed=seed

Set random generator seed. Seeds the system random number generator, which then produces a sequence
of initial generator states, one for each thread. Values for seed may be: time (the default, the seed is based on
the current time), rand (use a strong random source, failing if none is available), or an unsigned decimal
integer value. The random generator is invoked explicitly from a pgbench script (random… functions) or
implicitly (for instance option --rate uses it to schedule transactions). When explicitly set, the value used for
seeding is shown on the terminal. Any value allowed for seed may also be provided through the environment
variable PGBENCH_RANDOM_SEED. To ensure that the provided seed impacts all possible uses, put this option
first or use the environment variable.Setting the seed explicitly allows to reproduce a pgbench run exactly, as
far as random numbers are concerned. As the random state is managed per thread, this means the exact
same pgbench run for an identical invocation if there is one client per thread and there are no external or
data dependencies. From a statistical viewpoint reproducing runs exactly is a bad idea because it can hide
the performance variability or improve performance unduly, e.g., by hitting the same pages as a previous
run. However, it may also be of great help for debugging, for instance re-running a tricky case which leads to
an error. Use wisely.

• --sampling-rate=`rate`

Sampling rate, used when writing data into the log, to reduce the amount of log generated. If this option is
given, only the specified fraction of transactions are logged. 1.0 means all transactions will be logged, 0.05
means only 5% of the transactions will be logged.Remember to take the sampling rate into account when
processing the log file. For example, when computing TPS values, you need to multiply the numbers
accordingly (e.g., with 0.01 sample rate, you’ll only get 1/100 of the actual TPS).

• --show-script=scriptname

349

Show the actual code of builtin script scriptname on stderr, and exit immediately.

• --verbose-errors

Print messages about all errors and failures (errors without retrying) including which limit for retries was
exceeded and how far it was exceeded for the serialization/deadlock failures. (Note that in this case the
output can be significantly increased.).

Common Options
pgbench also accepts the following common command-line arguments for connection parameters:

• -h hostname --host=hostname

The database server’s host name

• -p port --port=port

The database server’s port number

• -U login --username=login

The user name to connect as

• -V --version

Print the pgbench version and exit.

• -? --help

Show help about pgbench command line arguments, and exit.

Exit Status
A successful run will exit with status 0. Exit status 1 indicates static problems such as invalid command-line
options or internal errors which are supposed to never occur. Early errors that occur when starting
benchmark such as initial connection failures also exit with status 1. Errors during the run such as database
errors or problems in the script will result in exit status 2. In the latter case, pgbench will print partial results.

Environment
• PGDATABASE PGHOST PGPORT PGUSER

Default connection parameters.

This utility, like most other IvorySQL utilities, uses the environment variables supported by libpq .

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible values
are always, auto and never.

pg_config
pg_config — retrieve information about the installed version of IvorySQL

Synopsis

pg_config [option…]

350

Options
To use pg_config, supply one or more of the following options:

• --bindir

Print the location of user executables. Use this, for example, to find the psql program. This is normally also
the location where the pg_config program resides.

• --docdir

Print the location of documentation files.

• --htmldir

Print the location of HTML documentation files.

• --includedir

Print the location of C header files of the client interfaces.

• --pkgincludedir

Print the location of other C header files.

• --includedir-server

Print the location of C header files for server programming.

• --libdir

Print the location of object code libraries.

• --pkglibdir

Print the location of dynamically loadable modules, or where the server would search for them. (Other
architecture-dependent data files might also be installed in this directory.)

• --localedir

Print the location of locale support files. (This will be an empty string if locale support was not configured
when IvorySQL was built.)

• --mandir

Print the location of manual pages.

• --sharedir

Print the location of architecture-independent support files.

• --sysconfdir

Print the location of system-wide configuration files.

• --pgxs

Print the location of extension makefiles.

• --configure

Print the options that were given to the configure script when IvorySQL was configured for building. This can
be used to reproduce the identical configuration, or to find out with what options a binary package was

351

built. (Note however that binary packages often contain vendor-specific custom patches.) See also the
examples below.

• --cc

Print the value of the CC variable that was used for building IvorySQL. This shows the C compiler used.

• --cppflags

Print the value of the CPPFLAGS variable that was used for building IvorySQL. This shows C compiler switches
needed at preprocessing time (typically, -I switches).

• --cflags

Print the value of the CFLAGS variable that was used for building IvorySQL. This shows C compiler switches.

• --cflags_sl

Print the value of the CFLAGS_SL variable that was used for building IvorySQL. This shows extra C compiler
switches used for building shared libraries.

• --ldflags

Print the value of the LDFLAGS variable that was used for building IvorySQL. This shows linker switches.

• --ldflags_ex

Print the value of the LDFLAGS_EX variable that was used for building IvorySQL. This shows linker switches
used for building executables only.

• --ldflags_sl

Print the value of the LDFLAGS_SL variable that was used for building IvorySQL. This shows linker switches
used for building shared libraries only.

• --libs

Print the value of the LIBS variable that was used for building IvorySQL. This normally contains -l switches
for external libraries linked into IvorySQL.

• --version

Print the version of IvorySQL.

• -? --help

Show help about pg_config command line arguments, and exit.

If more than one option is given, the information is printed in that order, one item per line. If no options are
given, all available information is printed, with labels.

Example
To reproduce the build configuration of the current IvorySQL installation, run the following command:

eval ./configure `pg_config --configure`

The output of pg_config --configure contains shell quotation marks so arguments with spaces are
represented correctly. Therefore, using eval is required for proper results.

352

pg_dump
pg_dump — extract a IvorySQL database into a script file or other archive file

Synopsis

pg_dump [connection-option…] [option…] [dbname]

Options
The following command-line options control the content and format of the output.

• dbname

Specifies the name of the database to be dumped. If this is not specified, the
environment variable `PGDATABASE` is used. If that is not set, the user name
specified for the connection is used.

• -a --data-only

Dump only the data, not the schema (data definitions). Table data, large objects,
and sequence values are dumped.This option is similar to, but for historical
reasons not identical to, specifying `--section=data`.

• -b --blobs

Include large objects in the dump. This is the default behavior except when `--
schema`, `--table`, or `--schema-only` is specified. The `-b` switch is therefore
only useful to add large objects to dumps where a specific schema or table has been
requested. Note that blobs are considered data and therefore will be included when
`--data-only` is used, but not when `--schema-only` is.

• -B --no-blobs

Exclude large objects in the dump.When both `-b` and `-B` are given, the behavior
is to output large objects, when data is being dumped, see the `-b` documentation.

• -c --clean

Output commands to clean (drop) database objects prior to outputting the commands
for creating them. (Unless `--if-exists` is also specified, restore might generate
some harmless error messages, if any objects were not present in the destination
database.)This option is ignored when emitting an archive (non-text) output file.
For the archive formats, you can specify the option when you call `pg_restore`.

• -C --create

Begin the output with a command to create the database itself and reconnect to the
created database. (With a script of this form, it doesn't matter which database in

353

the destination installation you connect to before running the script.) If `--
clean` is also specified, the script drops and recreates the target database before
reconnecting to it.With `--create`, the output also includes the database's comment
if any, and any configuration variable settings that are specific to this database,
that is, any `ALTER DATABASE ... SET ...` and `ALTER ROLE ... IN DATABASE ... SET
...` commands that mention this database. Access privileges for the database itself
are also dumped, unless `--no-acl` is specified.This option is ignored when
emitting an archive (non-text) output file. For the archive formats, you can
specify the option when you call `pg_restore`.

• -e `pattern` --extension=`pattern`

Dump only extensions matching *`pattern`*. When this option is not specified, all
non-system extensions in the target database will be dumped. Multiple extensions
can be selected by writing multiple `-e` switches. The *`pattern`* parameter is
interpreted as a pattern according to the same rules used by psql's `\d` commands ,
so multiple extensions can also be selected by writing wildcard characters in the
pattern. When using wildcards, be careful to quote the pattern if needed to prevent
the shell from expanding the wildcards.Any configuration relation registered by
`pg_extension_config_dump` is included in the dump if its extension is specified by
`--extension`.NoteWhen `-e` is specified, pg_dump makes no attempt to dump any
other database objects that the selected extension(s) might depend upon. Therefore,
there is no guarantee that the results of a specific-extension dump can be
successfully restored by themselves into a clean database.

• -E `encoding` --encoding=`encoding`

Create the dump in the specified character set encoding. By default, the dump is
created in the database encoding. (Another way to get the same result is to set the
`PGCLIENTENCODING` environment variable to the desired dump encoding.)

• -f `file` --file=`file`

Send output to the specified file. This parameter can be omitted for file based
output formats, in which case the standard output is used. It must be given for the
directory output format however, where it specifies the target directory instead of
a file. In this case the directory is created by `pg_dump` and must not exist
before.

• -F `format` --format=`format`

Selects the format of the output. *`format`* can be one of the following:`p`
`plain`Output a plain-text SQL script file (the default).`c` `custom`Output a
custom-format archive suitable for input into pg_restore. Together with the
directory output format, this is the most flexible output format in that it allows
manual selection and reordering of archived items during restore. This format is
also compressed by default.`d` `directory`Output a directory-format archive
suitable for input into pg_restore. This will create a directory with one file for
each table and blob being dumped, plus a so-called Table of Contents file
describing the dumped objects in a machine-readable format that pg_restore can

354

read. A directory format archive can be manipulated with standard Unix tools; for
example, files in an uncompressed archive can be compressed with the gzip tool.
This format is compressed by default and also supports parallel dumps.`t`
`tar`Output a `tar`-format archive suitable for input into pg_restore. The tar
format is compatible with the directory format: extracting a tar-format archive
produces a valid directory-format archive. However, the tar format does not support
compression. Also, when using tar format the relative order of table data items
cannot be changed during restore.

• -j `njobs` --jobs=`njobs`

Run the dump in parallel by dumping *`njobs`* tables simultaneously. This option
may reduce the time needed to perform the dump but it also increases the load on
the database server. You can only use this option with the directory output format
because this is the only output format where multiple processes can write their
data at the same time.pg_dump will open *`njobs`* + 1 connections to the database,
so make sure your [max_connections](https://www.IvorySQL.org/docs/current/runtime-
config-connection.html#GUC-MAX-CONNECTIONS) setting is high enough to accommodate
all connections.Requesting exclusive locks on database objects while running a
parallel dump could cause the dump to fail. The reason is that the pg_dump leader
process requests shared locks ([ACCESS
SHARE](https://www.IvorySQL.org/docs/current/explicit-locking.html#LOCKING-TABLES))
on the objects that the worker processes are going to dump later in order to make
sure that nobody deletes them and makes them go away while the dump is running. If
another client then requests an exclusive lock on a table, that lock will not be
granted but will be queued waiting for the shared lock of the leader process to be
released. Consequently any other access to the table will not be granted either and
will queue after the exclusive lock request. This includes the worker process
trying to dump the table. Without any precautions this would be a classic deadlock
situation. To detect this conflict, the pg_dump worker process requests another
shared lock using the `NOWAIT` option. If the worker process is not granted this
shared lock, somebody else must have requested an exclusive lock in the meantime
and there is no way to continue with the dump, so pg_dump has no choice but to
abort the dump.To perform a parallel dump, the database server needs to support
synchronized snapshots, a feature that was introduced in IvorySQL for primary
servers and 10 for standbys. With this feature, database clients can ensure they
see the same data set even though they use different connections. `pg_dump -j` uses
multiple database connections; it connects to the database once with the leader
process and once again for each worker job. Without the synchronized snapshot
feature, the different worker jobs wouldn't be guaranteed to see the same data in
each connection, which could lead to an inconsistent backup.

• -n `pattern` --schema=`pattern`

Dump only schemas matching *`pattern`*; this selects both the schema itself, and
all its contained objects. When this option is not specified, all non-system
schemas in the target database will be dumped. Multiple schemas can be selected by
writing multiple `-n` switches. The *`pattern`* parameter is interpreted as a
pattern according to the same rules used by psql's `\d` commands , so multiple
schemas can also be selected by writing wildcard characters in the pattern. When
using wildcards, be careful to quote the pattern if needed to prevent the shell
from expanding the wildcards; see

355

[Examples](https://www.IvorySQL.org/docs/current/app-pgdump.html#PG-DUMP-EXAMPLES)
below.NoteWhen `-n` is specified, pg_dump makes no attempt to dump any other
database objects that the selected schema(s) might depend upon. Therefore, there is
no guarantee that the results of a specific-schema dump can be successfully
restored by themselves into a clean database.NoteNon-schema objects such as blobs
are not dumped when `-n` is specified. You can add blobs back to the dump with the
`--blobs` switch.

• -N `pattern` --exclude-schema=`pattern`

Do not dump any schemas matching *`pattern`*. The pattern is interpreted according
to the same rules as for `-n`. `-N` can be given more than once to exclude schemas
matching any of several patterns.When both `-n` and `-N` are given, the behavior is
to dump just the schemas that match at least one `-n` switch but no `-N` switches.
If `-N` appears without `-n`, then schemas matching `-N` are excluded from what is
otherwise a normal dump.

• -O --no-owner

Do not output commands to set ownership of objects to match the original database.
By default, pg_dump issues `ALTER OWNER` or `SET SESSION AUTHORIZATION` statements
to set ownership of created database objects. These statements will fail when the
script is run unless it is started by a superuser (or the same user that owns all
of the objects in the script). To make a script that can be restored by any user,
but will give that user ownership of all the objects, specify `-O`.This option is
ignored when emitting an archive (non-text) output file. For the archive formats,
you can specify the option when you call `pg_restore`.

• -R --no-reconnect

This option is obsolete but still accepted for backwards compatibility.

• -s --schema-only

Dump only the object definitions (schema), not data.This option is the inverse of
`--data-only`. It is similar to, but for historical reasons not identical to,
specifying `--section=pre-data --section=post-data`.(Do not confuse this with the
`--schema` option, which uses the word “schema” in a different meaning.)To
exclude table data for only a subset of tables in the database, see `--exclude-
table-data`.

• -S `username` --superuser=`username`

Specify the superuser user name to use when disabling triggers. This is relevant
only if `--disable-triggers` is used. (Usually, it's better to leave this out, and
instead start the resulting script as superuser.)

• -t `pattern` --table=`pattern`

356

Dump only tables with names matching *`pattern`*. Multiple tables can be selected
by writing multiple `-t` switches. The *`pattern`* parameter is interpreted as a
pattern according to the same rules used by psql's `\d` commands , so multiple
tables can also be selected by writing wildcard characters in the pattern. When
using wildcards, be careful to quote the pattern if needed to prevent the shell
from expanding the wildcards; As well as tables, this option can be used to dump
the definition of matching views, materialized views, foreign tables, and
sequences. It will not dump the contents of views or materialized views, and the
contents of foreign tables will only be dumped if the corresponding foreign server
is specified with `--include-foreign-data`.The `-n` and `-N` switches have no
effect when `-t` is used, because tables selected by `-t` will be dumped regardless
of those switches, and non-table objects will not be dumped.NoteWhen `-t` is
specified, pg_dump makes no attempt to dump any other database objects that the
selected table(s) might depend upon. Therefore, there is no guarantee that the
results of a specific-table dump can be successfully restored by themselves into a
clean database.

• -T `pattern` --exclude-table=`pattern`

Do not dump any tables matching *`pattern`*. The pattern is interpreted according
to the same rules as for `-t`. `-T` can be given more than once to exclude tables
matching any of several patterns.When both `-t` and `-T` are given, the behavior is
to dump just the tables that match at least one `-t` switch but no `-T` switches.
If `-T` appears without `-t`, then tables matching `-T` are excluded from what is
otherwise a normal dump.

• -v --verbose

Specifies verbose mode. This will cause pg_dump to output detailed object comments
and start/stop times to the dump file, and progress messages to standard error.
Repeating the option causes additional debug-level messages to appear on standard
error.

• -V --version

Print the pg_dump version and exit.

• -x --no-privileges --no-acl

Prevent dumping of access privileges (grant/revoke commands).

• -Z `0..9` --compress=`0..9`

Specify the compression level to use. Zero means no compression. For the custom and
directory archive formats, this specifies compression of individual table-data
segments, and the default is to compress at a moderate level. For plain text
output, setting a nonzero compression level causes the entire output file to be
compressed, as though it had been fed through gzip; but the default is not to

357

compress. The tar archive format currently does not support compression at all.

• --binary-upgrade

This option is for use by in-place upgrade utilities. Its use for other purposes is
not recommended or supported. The behavior of the option may change in future
releases without notice.

• --column-inserts --attribute-inserts

Dump data as `INSERT` commands with explicit column names (`INSERT INTO *`table`*
(*`column`*, ...) VALUES ...`). This will make restoration very slow; it is mainly
useful for making dumps that can be loaded into non-IvorySQL databases. Any error
during restoring will cause only rows that are part of the problematic `INSERT` to
be lost, rather than the entire table contents.

• --disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them
to be quoted using SQL standard string syntax.

• --disable-triggers

This option is relevant only when creating a data-only dump. It instructs pg_dump
to include commands to temporarily disable triggers on the target tables while the
data is restored. Use this if you have referential integrity checks or other
triggers on the tables that you do not want to invoke during data
restore.Presently, the commands emitted for `--disable-triggers` must be done as
superuser. So, you should also specify a superuser name with `-S`, or preferably be
careful to start the resulting script as a superuser.This option is ignored when
emitting an archive (non-text) output file. For the archive formats, you can
specify the option when you call `pg_restore`.

• --enable-row-security

This option is relevant only when dumping the contents of a table which has row
security. By default, pg_dump will set
[row_security](https://www.IvorySQL.org/docs/current/runtime-config-
client.html#GUC-ROW-SECURITY) to off, to ensure that all data is dumped from the
table. If the user does not have sufficient privileges to bypass row security, then
an error is thrown. This parameter instructs pg_dump to set
[row_security](https://www.IvorySQL.org/docs/current/runtime-config-
client.html#GUC-ROW-SECURITY) to on instead, allowing the user to dump the parts of
the contents of the table that they have access to.Note that if you use this option
currently, you probably also want the dump be in `INSERT` format, as the `COPY
FROM` during restore does not support row security.

• --exclude-table-data=`pattern`

358

Do not dump data for any tables matching *`pattern`*. The pattern is interpreted
according to the same rules as for `-t`. `--exclude-table-data` can be given more
than once to exclude tables matching any of several patterns. This option is useful
when you need the definition of a particular table even though you do not need the
data in it.To exclude data for all tables in the database, see `--schema-only`.

• --extra-float-digits=`ndigits`

Use the specified value of `extra_float_digits` when dumping floating-point data,
instead of the maximum available precision. Routine dumps made for backup purposes
should not use this option.

• --if-exists

Use conditional commands (i.e., add an `IF EXISTS` clause) when cleaning database
objects. This option is not valid unless `--clean` is also specified.

• --include-foreign-data=`foreignserver`

Dump the data for any foreign table with a foreign server matching
`foreignserver` pattern. Multiple foreign servers can be selected by writing
multiple `--include-foreign-data` switches. Also, the *`foreignserver`* parameter
is interpreted as a pattern according to the same rules used by psql's `\d`
commands, so multiple foreign servers can also be selected by writing wildcard
characters in the pattern. When using wildcards, be careful to quote the pattern if
needed to prevent the shell from expanding the wildcards; The only exception is
that an empty pattern is disallowed.NoteWhen `--include-foreign-data` is specified,
pg_dump does not check that the foreign table is writable. Therefore, there is no
guarantee that the results of a foreign table dump can be successfully restored.

• --inserts

Dump data as `INSERT` commands (rather than `COPY`). This will make restoration
very slow; it is mainly useful for making dumps that can be loaded into non-
IvorySQL databases. Any error during restoring will cause only rows that are part
of the problematic `INSERT` to be lost, rather than the entire table contents. Note
that the restore might fail altogether if you have rearranged column order. The `--
column-inserts` option is safe against column order changes, though even slower.

• --load-via-partition-root

When dumping data for a table partition, make the `COPY` or `INSERT` statements
target the root of the partitioning hierarchy that contains it, rather than the
partition itself. This causes the appropriate partition to be re-determined for
each row when the data is loaded. This may be useful when restoring data on a
server where rows do not always fall into the same partitions as they did on the
original server. That could happen, for example, if the partitioning column is of
type text and the two systems have different definitions of the collation used to

359

sort the partitioning column.It is best not to use parallelism when restoring from
an archive made with this option, because pg_restore will not know exactly which
partition(s) a given archive data item will load data into. This could result in
inefficiency due to lock conflicts between parallel jobs, or perhaps even restore
failures due to foreign key constraints being set up before all the relevant data
is loaded.

• --lock-wait-timeout=`timeout`

Do not wait forever to acquire shared table locks at the beginning of the dump.
Instead fail if unable to lock a table within the specified *`timeout`*. The
timeout may be specified in any of the formats accepted by `SET statement_timeout`

• --no-comments

Do not dump comments.

• --no-publications

Do not dump publications.

• --no-security-labels

Do not dump security labels.

• --no-subscriptions

Do not dump subscriptions.

• --no-sync

By default, `pg_dump` will wait for all files to be written safely to disk. This
option causes `pg_dump` to return without waiting, which is faster, but means that
a subsequent operating system crash can leave the dump corrupt. Generally, this
option is useful for testing but should not be used when dumping data from
production installation.

• --no-tablespaces

Do not output commands to select tablespaces. With this option, all objects will be
created in whichever tablespace is the default during restore.This option is
ignored when emitting an archive (non-text) output file. For the archive formats,
you can specify the option when you call `pg_restore`.

• --no-toast-compression

360

Do not output commands to set TOAST compression methods. With this option, all
columns will be restored with the default compression setting.

• --no-unlogged-table-data

Do not dump the contents of unlogged tables and sequences. This option has no
effect on whether or not the table and sequence definitions (schema) are dumped; it
only suppresses dumping the table and sequence data. Data in unlogged tables and
sequences is always excluded when dumping from a standby server.

• --on-conflict-do-nothing

Add `ON CONFLICT DO NOTHING` to `INSERT` commands. This option is not valid unless
`--inserts`, `--column-inserts` or `--rows-per-insert` is also specified.

• --quote-all-identifiers

Force quoting of all identifiers. This option is recommended when dumping a
database from a server whose IvorySQL major version is different from pg_dump's, or
when the output is intended to be loaded into a server of a different major
version. By default, pg_dump quotes only identifiers that are reserved words in its
own major version. This sometimes results in compatibility issues when dealing with
servers of other versions that may have slightly different sets of reserved words.
Using `--quote-all-identifiers` prevents such issues, at the price of a harder-to-
read dump script.

• --rows-per-insert=`nrows`

Dump data as `INSERT` commands (rather than `COPY`). Controls the maximum number of
rows per `INSERT` command. The value specified must be a number greater than zero.
Any error during restoring will cause only rows that are part of the problematic
`INSERT` to be lost, rather than the entire table contents.

• --section=`sectionname`

Only dump the named section. The section name can be `pre-data`, `data`, or `post-
data`. This option can be specified more than once to select multiple sections. The
default is to dump all sections.The data section contains actual table data, large-
object contents, and sequence values. Post-data items include definitions of
indexes, triggers, rules, and constraints other than validated check constraints.
Pre-data items include all other data definition items.

• --serializable-deferrable

Use a `serializable` transaction for the dump, to ensure that the snapshot used is
consistent with later database states; but do this by waiting for a point in the
transaction stream at which no anomalies can be present, so that there isn't a risk

361

of the dump failing or causing other transactions to roll back with a
`serialization_failure`.This option is not beneficial for a dump which is intended
only for disaster recovery. It could be useful for a dump used to load a copy of
the database for reporting or other read-only load sharing while the original
database continues to be updated. Without it the dump may reflect a state which is
not consistent with any serial execution of the transactions eventually committed.
For example, if batch processing techniques are used, a batch may show as closed in
the dump without all of the items which are in the batch appearing.This option will
make no difference if there are no read-write transactions active when pg_dump is
started. If read-write transactions are active, the start of the dump may be
delayed for an indeterminate length of time. Once running, performance with or
without the switch is the same.

• --snapshot=`snapshotname`

Use the specified synchronized snapshot when making a dump of the database.This
option is useful when needing to synchronize the dump with a logical replication
slot or with a concurrent session.In the case of a parallel dump, the snapshot name
defined by this option is used rather than taking a new snapshot.

• --strict-names

Require that each extension (`-e`/`--extension`), schema (`-n`/`--schema`) and
table (`-t`/`--table`) qualifier match at least one extension/schema/table in the
database to be dumped. Note that if none of the extension/schema/table qualifiers
find matches, pg_dump will generate an error even without `--strict-names`.This
option has no effect on `-N`/`--exclude-schema`, `-T`/`--exclude-table`, or `--
exclude-table-data`. An exclude pattern failing to match any objects is not
considered an error.

• --use-set-session-authorization

Output SQL-standard `SET SESSION AUTHORIZATION` commands instead of `ALTER OWNER`
commands to determine object ownership. This makes the dump more standards-
compatible, but depending on the history of the objects in the dump, might not
restore properly. Also, a dump using `SET SESSION AUTHORIZATION` will certainly
require superuser privileges to restore correctly, whereas `ALTER OWNER` requires
lesser privileges.

• -? --help

Show help about pg_dump command line arguments, and exit.

The following command-line options control the database connection parameters.

• -d `dbname` --dbname=`dbname`

Specifies the name of the database to connect to. This is equivalent to specifying
`dbname` as the first non-option argument on the command line. The *`dbname`* can

362

be a [connection string](https://www.IvorySQL.org/docs/current/libpq-
connect.html#LIBPQ-CONNSTRING). If so, connection string parameters will override
any conflicting command line options.

• -h `host` --host=`host`

Specifies the host name of the machine on which the server is running. If the value
begins with a slash, it is used as the directory for the Unix domain socket. The
default is taken from the `PGHOST` environment variable, if set, else a Unix domain
socket connection is attempted.

• -p `port` --port=`port`

Specifies the TCP port or local Unix domain socket file extension on which the
server is listening for connections. Defaults to the `PGPORT` environment variable,
if set, or a compiled-in default.

• -U `username` --username=`username`

User name to connect as.

• -w --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a `.pgpass` file, the connection
attempt will fail. This option can be useful in batch jobs and scripts where no
user is present to enter a password.

• -W --password

Force pg_dump to prompt for a password before connecting to a database.This option
is never essential, since pg_dump will automatically prompt for a password if the
server demands password authentication. However, pg_dump will waste a connection
attempt finding out that the server wants a password. In some cases it is worth
typing `-W` to avoid the extra connection attempt.

• --role=`rolename`

Specifies a role name to be used to create the dump. This option causes pg_dump to
issue a `SET ROLE` *`rolename`* command after connecting to the database. It is
useful when the authenticated user (specified by `-U`) lacks privileges needed by
pg_dump, but can switch to a role with the required rights. Some installations have
a policy against logging in directly as a superuser, and use of this option allows
dumps to be made without violating the policy.

363

Environment
• PGDATABASE PGHOST PGOPTIONS PGPORT PGUSER

Default connection parameters.

• PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are
`always`, `auto` and `never`.

This utility, like most other IvorySQL utilities, also uses the environment variables supported by libpq.

Diagnostics
pg_dump internally executes SELECT statements. If you have problems running pg_dump, make sure you are
able to select information from the database using, for example, [psql](https://www.IvorySQL.org/docs/
current/app-psql.html). Also, any default connection settings and environment variables used by the libpq
front-end library will apply.

The database activity of pg_dump is normally collected by the cumulative statistics system. If this is
undesirable, you can set parameter track_counts to false via PGOPTIONS or the ALTER USER command.

Notes
If your database cluster has any local additions to the template1 database, be careful to restore the output
of pg_dump into a truly empty database; otherwise you are likely to get errors due to duplicate definitions of
the added objects. To make an empty database without any local additions, copy from template0 not
template1, for example:

CREATE DATABASE foo WITH TEMPLATE template0;

When a data-only dump is chosen and the option --disable-triggers is used, pg_dump emits commands
to disable triggers on user tables before inserting the data, and then commands to re-enable them after the
data has been inserted. If the restore is stopped in the middle, the system catalogs might be left in the wrong
state.

The dump file produced by pg_dump does not contain the statistics used by the optimizer to make query
planning decisions. Therefore, it is wise to run ANALYZE after restoring from a dump file to ensure optimal
performance.

When dumping logical replication subscriptions, pg_dump will generate CREATE SUBSCRIPTION commands
that use the connect = false option, so that restoring the subscription does not make remote connections
for creating a replication slot or for initial table copy. That way, the dump can be restored without requiring
network access to the remote servers. It is then up to the user to reactivate the subscriptions in a suitable
way. If the involved hosts have changed, the connection information might have to be changed. It might also
be appropriate to truncate the target tables before initiating a new full table copy. If users intend to copy
initial data during refresh they must create the slot with two_phase = false. After the initial sync, the
two_phase option will be automatically enabled by the subscriber if the subscription had been originally
created with two_phase = true option.

Examples
To dump a database called mydb into an SQL-script file:

364

https://www.IvorySQL.org/docs/current/app-psql.html
https://www.IvorySQL.org/docs/current/app-psql.html
https://www.IvorySQL.org/docs/current/app-psql.html
https://www.IvorySQL.org/docs/current/app-psql.html
https://www.IvorySQL.org/docs/current/app-psql.html
https://www.IvorySQL.org/docs/current/app-psql.html
https://www.IvorySQL.org/docs/current/app-psql.html

$ pg_dump mydb > db.sql

To reload such a script into a (freshly created) database named newdb:

$ psql -d newdb -f db.sql

To dump a database into a custom-format archive file:

$ pg_dump -Fc mydb > db.dump

To dump a database into a directory-format archive:

$ pg_dump -Fd mydb -f dumpdir

To dump a database into a directory-format archive in parallel with 5 worker jobs:

$ pg_dump -Fd mydb -j 5 -f dumpdir

To reload an archive file into a (freshly created) database named newdb:

$ pg_restore -d newdb db.dump

To reload an archive file into the same database it was dumped from, discarding the current contents of that
database:

$ pg_restore -d postgres --clean --create db.dump

To dump a single table named mytab:

$ pg_dump -t mytab mydb > db.sql

To dump all tables whose names start with emp in the detroit schema, except for the table named
employee_log:

$ pg_dump -t 'detroit.emp*' -T detroit.employee_log mydb > db.sql

To dump all schemas whose names start with east or west and end in gsm, excluding any schemas whose
names contain the word test:

$ pg_dump -n 'east*gsm' -n 'west*gsm' -N '*test*' mydb > db.sql

The same, using regular expression notation to consolidate the switches:

365

$ pg_dump -n '(east|west)*gsm' -N '*test*' mydb > db.sql

To dump all database objects except for tables whose names begin with ts_:

$ pg_dump -T 'ts_*' mydb > db.sql

To specify an upper-case or mixed-case name in -t and related switches, you need to double-quote the
name; else it will be folded to lower case.But double quotes are special to the shell, so in turn they must be
quoted. Thus, to dump a single table with a mixed-case name, you need something like

$ pg_dump -t "\"MixedCaseName\"" mydb > mytab.sql

pg_dumpall
pg_dumpall — extract a IvorySQL database cluster into a script file

Synopsis

pg_dumpall [connection-option…] [option…]

Options
The following command-line options control the content and format of the output.

• -a --data-only

Dump only the data, not the schema (data definitions).

• -c --clean

Include SQL commands to clean (drop) databases before recreating them. DROP commands for roles and
tablespaces are added as well.

• -E encoding --encoding=encoding

Create the dump in the specified character set encoding. By default, the dump is created in the database
encoding. (Another way to get the same result is to set the PGCLIENTENCODING environment variable to the
desired dump encoding.)

• -f filename --file=filename

Send output to the specified file. If this is omitted, the standard output is used.

• -g --globals-only

Dump only global objects (roles and tablespaces), no databases.

• -O --no-owner

Do not output commands to set ownership of objects to match the original database. By default,
pg_dumpall issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set ownership of created
schema elements. These statements will fail when the script is run unless it is started by a superuser (or the
same user that owns all of the objects in the script). To make a script that can be restored by any user, but
will give that user ownership of all the objects, specify -O.

366

• -r --roles-only

Dump only roles, no databases or tablespaces.

• -s --schema-only

Dump only the object definitions (schema), not data.

• -S username --superuser=username

Specify the superuser user name to use when disabling triggers. This is relevant only if --disable-triggers
is used. (Usually, it’s better to leave this out, and instead start the resulting script as superuser.)

• -t --tablespaces-only

Dump only tablespaces, no databases or roles.

• -v --verbose

Specifies verbose mode. This will cause pg_dumpall to output start/stop times to the dump file, and
progress messages to standard error. Repeating the option causes additional debug-level messages to
appear on standard error. The option is also passed down to pg_dump.

• -V --version

Print the pg_dumpall version and exit.

• -x --no-privileges --no-acl

Prevent dumping of access privileges (grant/revoke commands).

• --binary-upgrade

This option is for use by in-place upgrade utilities. Its use for other purposes is not recommended or
supported. The behavior of the option may change in future releases without notice.

• --column-inserts --attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT INTO table (column, …) VALUES …
). This will make restoration very slow; it is mainly useful for making dumps that can be loaded into non-
IvorySQL databases.

• --disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to be quoted using SQL
standard string syntax.

• --disable-triggers

This option is relevant only when creating a data-only dump. It instructs pg_dumpall to include commands
to temporarily disable triggers on the target tables while the data is restored. Use this if you have referential
integrity checks or other triggers on the tables that you do not want to invoke during data restore.Presently,
the commands emitted for --disable-triggers must be done as superuser. So, you should also specify a
superuser name with -S, or preferably be careful to start the resulting script as a superuser.

• --exclude-database=`pattern`

Do not dump databases whose name matches pattern. Multiple patterns can be excluded by writing
multiple --exclude-database switches. The pattern parameter is interpreted as a pattern according to the
same rules used by psql’s \d commands, so multiple databases can also be excluded by writing wildcard
characters in the pattern. When using wildcards, be careful to quote the pattern if needed to prevent shell
wildcard expansion.

367

• --extra-float-digits=`ndigits`

Use the specified value of extra_float_digits when dumping floating-point data, instead of the maximum
available precision. Routine dumps made for backup purposes should not use this option.

• --if-exists

Use conditional commands (i.e., add an IF EXISTS clause) to drop databases and other objects. This option
is not valid unless --clean is also specified.

• --inserts

Dump data as INSERT commands (rather than COPY). This will make restoration very slow; it is mainly useful
for making dumps that can be loaded into non-IvorySQL databases. Note that the restore might fail
altogether if you have rearranged column order. The --column-inserts option is safer, though even slower.

• --load-via-partition-root

When dumping data for a table partition, make the COPY or INSERT statements target the root of the
partitioning hierarchy that contains it, rather than the partition itself. This causes the appropriate partition to
be re-determined for each row when the data is loaded. This may be useful when restoring data on a server
where rows do not always fall into the same partitions as they did on the original server. That could happen,
for example, if the partitioning column is of type text and the two systems have different definitions of the
collation used to sort the partitioning column.

• --lock-wait-timeout=`timeout`

Do not wait forever to acquire shared table locks at the beginning of the dump. Instead, fail if unable to lock
a table within the specified timeout. The timeout may be specified in any of the formats accepted by SET
statement_timeout.

• --no-comments

Do not dump comments.

• --no-publications

Do not dump publications.

• --no-role-passwords

Do not dump passwords for roles. When restored, roles will have a null password, and password
authentication will always fail until the password is set. Since password values aren’t needed when this
option is specified, the role information is read from the catalog view pg_roles instead of pg_authid.
Therefore, this option also helps if access to pg_authid is restricted by some security policy.

• --no-security-labels

Do not dump security labels.

• --no-subscriptions

Do not dump subscriptions.

• --no-sync

By default, pg_dumpall will wait for all files to be written safely to disk. This option causes pg_dumpall to
return without waiting, which is faster, but means that a subsequent operating system crash can leave the
dump corrupt. Generally, this option is useful for testing but should not be used when dumping data from
production installation.

• --no-table-access-method

368

Do not output commands to select table access methods. With this option, all objects will be created with
whichever table access method is the default during restore.

• --no-tablespaces

Do not output commands to create tablespaces nor select tablespaces for objects. With this option, all
objects will be created in whichever tablespace is the default during restore.

• --no-toast-compression

Do not output commands to set TOAST compression methods. With this option, all columns will be restored
with the default compression setting.

• --no-unlogged-table-data

Do not dump the contents of unlogged tables. This option has no effect on whether or not the table
definitions (schema) are dumped; it only suppresses dumping the table data.

• --on-conflict-do-nothing

Add ON CONFLICT DO NOTHING to INSERT commands. This option is not valid unless --inserts or --column
-inserts is also specified.

• --quote-all-identifiers

Force quoting of all identifiers. This option is recommended when dumping a database from a server whose
IvorySQL major version is different from pg_dumpall’s, or when the output is intended to be loaded into a
server of a different major version. By default, pg_dumpall quotes only identifiers that are reserved words in
its own major version. This sometimes results in compatibility issues when dealing with servers of other
versions that may have slightly different sets of reserved words. Using --quote-all-identifiers prevents
such issues, at the price of a harder-to-read dump script.

• --rows-per-insert=`nrows`

Dump data as INSERT commands (rather than COPY). Controls the maximum number of rows per INSERT
command. The value specified must be a number greater than zero. Any error during restoring will cause
only rows that are part of the problematic INSERT to be lost, rather than the entire table contents.

• --use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER OWNER commands to
determine object ownership. This makes the dump more standards compatible, but depending on the
history of the objects in the dump, might not restore properly.

• -? --help

Show help about pg_dumpall command line arguments, and exit.

The following command-line options control the database connection parameters.

• -d connstr --dbname=connstr

Specifies parameters used to connect to the server, as a connection string; these will override any conflicting
command line options.The option is called --dbname for consistency with other client applications, but
because pg_dumpall needs to connect to many databases, the database name in the connection string will
be ignored. Use the -l option to specify the name of the database used for the initial connection, which will
dump global objects and discover what other databases should be dumped.

• -h host --host=host

Specifies the host name of the machine on which the database server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST
environment variable, if set, else a Unix domain socket connection is attempted.

369

https://www.IvorySQL.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

• -l dbname --database=dbname

Specifies the name of the database to connect to for dumping global objects and discovering what other
databases should be dumped. If not specified, the postgres database will be used, and if that does not exist,
template1 will be used.

• -p `port` --port=`port`

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

• -U username --username=username

User name to connect as.

• -w --no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be useful in
batch jobs and scripts where no user is present to enter a password.

• -W --password

Force pg_dumpall to prompt for a password before connecting to a database.This option is never essential,
since pg_dumpall will automatically prompt for a password if the server demands password authentication.
However, pg_dumpall will waste a connection attempt finding out that the server wants a password. In
some cases it is worth typing -W to avoid the extra connection attempt.Note that the password prompt will
occur again for each database to be dumped. Usually, it’s better to set up a ~/.pgpass file than to rely on
manual password entry.

• --role=`rolename`

Specifies a role name to be used to create the dump. This option causes pg_dumpall to issue a SET ROLE
rolename command after connecting to the database. It is useful when the authenticated user (specified by
-U) lacks privileges needed by pg_dumpall, but can switch to a role with the required rights. Some
installations have a policy against logging in directly as a superuser, and use of this option allows dumps to
be made without violating the policy.

Environment
• PGHOST PGOPTIONS PGPORT PGUSER

Default connection parameters

• PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other IvorySQL utilities, also uses the environment variables supported by libpq

Notes
Since pg_dumpall calls pg_dump internally, some diagnostic messages will refer to pg_dump.

The --clean option can be useful even when your intention is to restore the dump script into a fresh cluster.
Use of --clean authorizes the script to drop and re-create the built-in postgres and template1 databases,
ensuring that those databases will retain the same properties (for instance, locale and encoding) that they
had in the source cluster. Without the option, those databases will retain their existing database-level
properties, as well as any pre-existing contents.

Once restored, it is wise to run ANALYZE on each database so the optimizer has useful statistics. You can also
run vacuumdb -a -z to analyze all databases.

370

The dump script should not be expected to run completely without errors. In particular, because the script
will issue CREATE ROLE for every role existing in the source cluster, it is certain to get a “role already exists”
error for the bootstrap superuser, unless the destination cluster was initialized with a different bootstrap
superuser name. This error is harmless and should be ignored. Use of the --clean option is likely to produce
additional harmless error messages about non-existent objects, although you can minimize those by adding
--if-exists.

pg_dumpall requires all needed tablespace directories to exist before the restore; otherwise, database
creation will fail for databases in non-default locations.

Examples
To dump all databases:

$ pg_dumpall > db.out

To restore database(s) from this file, you can use:

$ psql -f db.out postgres

It is not important to which database you connect here since the script file created by pg_dumpall will
contain the appropriate commands to create and connect to the saved databases. An exception is that if
you specified --clean, you must connect to the postgres database initially; the script will attempt to drop
other databases immediately, and that will fail for the database you are connected to.

pg_isready
pg_isready — check the connection status of a IvorySQL server

Synopsis

pg_isready [connection-option…] [option…]

Options
• -d dbname --dbname=dbname

Specifies the name of the database to connect to. The dbname can be a connection string. If so, connection
string parameters will override any conflicting command line options.

• -h hostname --host=hostname

Specifies the host name of the machine on which the server is running. If the value begins with a slash, it is
used as the directory for the Unix-domain socket.

• -p port --port=port

Specifies the TCP port or the local Unix-domain socket file extension on which the server is listening for
connections. Defaults to the value of the PGPORT environment variable or, if not set, to the port specified at
compile time, usually 5432.

• -q --quiet

Do not display status message. This is useful when scripting.

• -t seconds --timeout=seconds

371

https://www.IvorySQL.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

The maximum number of seconds to wait when attempting connection before returning that the server is
not responding. Setting to 0 disables. The default is 3 seconds.

• -U username --username=username

Connect to the database as the user username instead of the default.

• -V --version

Print the pg_isready version and exit.

• -? --help

Show help about pg_isready command line arguments, and exit.

Exit Status
pg_isready returns 0 to the shell if the server is accepting connections normally, 1 if the server is rejecting
connections (for example during startup), 2 if there was no response to the connection attempt, and 3 if no
attempt was made (for example due to invalid parameters).

Environment
pg_isready, like most other IvorySQL utilities, also uses the environment variables supported by libpq .

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible values
are always, auto and never.

Notes
It is not necessary to supply correct user name, password, or database name values to obtain the server
status; however, if incorrect values are provided, the server will log a failed connection attempt.

Examples
Standard Usage:

$ pg_isready
/tmp:5432 - accepting connections
$ echo $?
0

Running with connection parameters to a IvorySQL cluster in startup:

$ pg_isready -h localhost -p 5433
localhost:5433 - rejecting connections
$ echo $?
1

Running with connection parameters to a non-responsive IvorySQL cluster:

$ pg_isready -h someremotehost
someremotehost:5432 - no response

372

$ echo $?
2

pg_receivewal
pg_receivewal — stream write-ahead logs from a IvorySQL server

Synopsis

pg_receivewal [option…]

Options
• -D directory --directory=directory

Directory to write the output to.This parameter is required.

• -E lsn --endpos=lsn

Automatically stop replication and exit with normal exit status 0 when receiving reaches the specified LSN.If
there is a record with LSN exactly equal to lsn, the record will be processed.

• --if-not-exists

Do not error out when --create-slot is specified and a slot with the specified name already exists.

• -n --no-loop

Don’t loop on connection errors. Instead, exit right away with an error.

• --no-sync

This option causes pg_receivewal to not force WAL data to be flushed to disk. This is faster, but means that a
subsequent operating system crash can leave the WAL segments corrupt. Generally, this option is useful for
testing but should not be used when doing WAL archiving on a production deployment.This option is
incompatible with --synchronous.

• -s interval --status-interval=interval

Specifies the number of seconds between status packets sent back to the server. This allows for easier
monitoring of the progress from server. A value of zero disables the periodic status updates completely,
although an update will still be sent when requested by the server, to avoid timeout disconnect. The default
value is 10 seconds.

• -S slotname --slot=slotname

Require pg_receivewal to use an existing replication slot, When this option is used, pg_receivewal will report
a flush position to the server, indicating when each segment has been synchronized to disk so that the server
can remove that segment if it is not otherwise needed.When the replication client of pg_receivewal is
configured on the server as a synchronous standby, then using a replication slot will report the flush position
to the server, but only when a WAL file is closed. Therefore, that configuration will cause transactions on the
primary to wait for a long time and effectively not work satisfactorily. The option --synchronous (see below)
must be specified in addition to make this work correctly.

• --synchronous

Flush the WAL data to disk immediately after it has been received. Also send a status packet back to the
server immediately after flushing, regardless of --status-interval.This option should be specified if the
replication client of pg_receivewal is configured on the server as a synchronous standby, to ensure that
timely feedback is sent to the server.

373

• -v --verbose

Enables verbose mode.

• -Z level -Z method[:*detail*] --compress=level --compress=method[:*detail*]

Enables compression of write-ahead logs.The compression method can be set to gzip, lz4 (if IvorySQL was
compiled with --with-lz4) or none for no compression. A compression detail string can optionally be
specified. If the detail string is an integer, it specifies the compression level. Otherwise, it should be a
comma-separated list of items, each of the form keyword or keyword=value. Currently, the only supported
keyword is level.If no compression level is specified, the default compression level will be used. If only a
level is specified without mentioning an algorithm, gzip compression will be used if the level is greater than
0, and no compression will be used if the level is 0.The suffix .gz will automatically be added to all filenames
when using gzip, and the suffix .lz4 is added when using lz4.

The following command-line options control the database connection parameters.

• -d connstr --dbname=connstr

Specifies parameters used to connect to the server, as a connection string; these will override any conflicting
command line options.The option is called --dbname for consistency with other client applications, but
because pg_receivewal doesn’t connect to any particular database in the cluster, database name in the
connection string will be ignored.

• -h `host` --host=`host`

Specifies the host name of the machine on which the server is running. If the value begins with a slash, it is
used as the directory for the Unix domain socket. The default is taken from the PGHOST environment variable,
if set, else a Unix domain socket connection is attempted.

• -p `port` --port=`port`

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

• -U `username` --username=`username`

User name to connect as.

• -w --no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be useful in
batch jobs and scripts where no user is present to enter a password.

• -W --password

Force pg_receivewal to prompt for a password before connecting to a database.This option is never
essential, since pg_receivewal will automatically prompt for a password if the server demands password
authentication. However, pg_receivewal will waste a connection attempt finding out that the server wants a
password. In some cases it is worth typing -W to avoid the extra connection attempt.

pg_receivewal can perform one of the two following actions in order to control physical replication slots:

• --create-slot

Create a new physical replication slot with the name specified in --slot, then exit.

• --drop-slot

Drop the replication slot with the name specified in --slot, then exit.

Other options are also available:

374

https://www.IvorySQL.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

• -V --version

Print the pg_receivewal version and exit.

• -? --help

Show help about pg_receivewal command line arguments, and exit.

Exit Status
pg_receivewal will exit with status 0 when terminated by the SIGINT signal. (That is the normal way to end it.
Hence it is not an error.) For fatal errors or other signals, the exit status will be nonzero.

Environment
This utility, like most other IvorySQL utilities, uses the environment variables supported by libpq

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible values
are always, auto and never.

Notes
When using pg_receivewal instead of archive_command or archive_library as the main WAL backup
method, it is strongly recommended to use replication slots. Otherwise, the server is free to recycle or
remove write-ahead log files before they are backed up, because it does not have any information, either
from archive_command or archive_library or the replication slots, about how far the WAL stream has been
archived. Note, however, that a replication slot will fill up the server’s disk space if the receiver does not
keep up with fetching the WAL data.

pg_receivewal will preserve group permissions on the received WAL files if group permissions are enabled on
the source cluster.

Examples
To stream the write-ahead log from the server at mydbserver and store it in the local directory
/usr/local/pgsql/archive:

$ pg_receivewal -h mydbserver -D /usr/local/pgsql/archive

pg_recvlogical
pg_recvlogical — control IvorySQL logical decoding streams

Synopsis

pg_recvlogical [option…]

Options
At least one of the following options must be specified to select an action:

• --create-slot

Create a new logical replication slot with the name specified by --slot, using the output plugin specified by
--plugin, for the database specified by --dbname.The --two-phase can be specified with --create-slot to
enable decoding of prepared transactions.

375

https://www.IvorySQL.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-COMMAND
https://www.IvorySQL.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-LIBRARY
https://www.IvorySQL.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-COMMAND
https://www.IvorySQL.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-LIBRARY

• --drop-slot

Drop the replication slot with the name specified by --slot, then exit.

• --start

Begin streaming changes from the logical replication slot specified by --slot, continuing until terminated by
a signal. If the server side change stream ends with a server shutdown or disconnect, retry in a loop unless
--no-loop is specified.The stream format is determined by the output plugin specified when the slot was
created.The connection must be to the same database used to create the slot.

--create-slot and --start can be specified together. --drop-slot cannot be combined with another
action.

The following command-line options control the location and format of the output and other replication
behavior:

• -E lsn --endpos=lsn

In --start mode, automatically stop replication and exit with normal exit status 0 when receiving reaches
the specified LSN. If specified when not in --start mode, an error is raised.If there’s a record with LSN
exactly equal to lsn, the record will be output.The --endpos option is not aware of transaction boundaries
and may truncate output partway through a transaction. Any partially output transaction will not be
consumed and will be replayed again when the slot is next read from. Individual messages are never
truncated.

• -f filename --file=filename

Write received and decoded transaction data into this file. Use - for stdout.

• -F interval_seconds --fsync-interval=interval_seconds

Specifies how often pg_recvlogical should issue fsync() calls to ensure the output file is safely flushed to
disk.The server will occasionally request the client to perform a flush and report the flush position to the
server. This setting is in addition to that, to perform flushes more frequently.Specifying an interval of 0
disables issuing fsync() calls altogether, while still reporting progress to the server. In this case, data could
be lost in the event of a crash.

• -I lsn --startpos=lsn

In --start mode, start replication from the given LSN. For details on the effect of this.

• --if-not-exists

Do not error out when --create-slot is specified and a slot with the specified name already exists.

• -n --no-loop

When the connection to the server is lost, do not retry in a loop, just exit.

• -o name[=value] --option=name[=value]

Pass the option name to the output plugin with, if specified, the option value value. Which options exist and
their effects depends on the used output plugin.

• -P plugin --plugin=plugin

When creating a slot, use the specified logical decoding output plugin. This option has no effect if the slot
already exists.

• -s interval_seconds --status-interval=interval_seconds

This option has the same effect as the option of the same name in pg_receivewal. See the description there.

376

https://www.IvorySQL.org/docs/current/app-pgreceivewal.html

• -S slot_name --slot=slot_name

In --start mode, use the existing logical replication slot named slot_name. In --create-slot mode, create
the slot with this name. In --drop-slot mode, delete the slot with this name.

• -t --two-phase

Enables decoding of prepared transactions. This option may only be specified with --create-slot

• -v --verbose

Enables verbose mode.

The following command-line options control the database connection parameters.

• -d dbname --dbname=dbname

The database to connect to. See the description of the actions for what this means in detail. The dbname can
be a connection string. If so, connection string parameters will override any conflicting command line
options. Defaults to the user name.

• -h hostname-or-ip --host=hostname-or-ip

Specifies the host name of the machine on which the server is running. If the value begins with a slash, it is
used as the directory for the Unix domain socket. The default is taken from the PGHOST environment variable,
if set, else a Unix domain socket connection is attempted.

• -p port --port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

• -U user --username=user

User name to connect as. Defaults to current operating system user name.

• -w --no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be useful in
batch jobs and scripts where no user is present to enter a password.

• -W --password

Force pg_recvlogical to prompt for a password before connecting to a database.This option is never
essential, since pg_recvlogical will automatically prompt for a password if the server demands password
authentication. However, pg_recvlogical will waste a connection attempt finding out that the server wants a
password. In some cases it is worth typing -W to avoid the extra connection attempt.

The following additional options are available:

• -V --version

Print the pg_recvlogical version and exit.

• -? --help

Show help about pg_recvlogical command line arguments, and exit.

Environment
This utility, like most other IvorySQL utilities, uses the environment variables supported by libpq .

377

https://www.IvorySQL.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible values
are always, auto and never.

Notes
pg_recvlogical will preserve group permissions on the received WAL files if group permissions are enabled
on the source cluster.

pg_restore
pg_restore — restore a IvorySQL database from an archive file created by pg_dump

Synopsis

pg_restore [connection-option…] [option…] [filename]

Options
pg_restore accepts the following command line arguments.

• filename

Specifies the location of the archive file (or directory, for a directory-format archive) to be restored. If not
specified, the standard input is used.

• -a --data-only

Restore only the data, not the schema (data definitions). Table data, large objects, and sequence values are
restored, if present in the archive.This option is similar to, but for historical reasons not identical to,
specifying --section=data.

• -c --clean

Clean (drop) database objects before recreating them. (Unless --if-exists is used, this might generate
some harmless error messages, if any objects were not present in the destination database.)

• -C --create

Create the database before restoring into it. If --clean is also specified, drop and recreate the target
database before connecting to it.With --create, pg_restore also restores the database’s comment if any,
and any configuration variable settings that are specific to this database, that is, any ALTER DATABASE … SET
… and ALTER ROLE … IN DATABASE … SET … commands that mention this database. Access privileges for
the database itself are also restored, unless --no-acl is specified.When this option is used, the database
named with -d is used only to issue the initial DROP DATABASE and CREATE DATABASE commands. All data is
restored into the database name that appears in the archive.

• -d dbname --dbname=dbname

Connect to database dbname and restore directly into the database. The dbname can be a connection string. If
so, connection string parameters will override any conflicting command line options.

• -e --exit-on-error

Exit if an error is encountered while sending SQL commands to the database. The default is to continue and
to display a count of errors at the end of the restoration.

• -f `filename` --file=`filename`

Specify output file for generated script, or for the listing when used with -l. Use - for stdout.

378

https://www.IvorySQL.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

• -F format --format=format

Specify format of the archive. It is not necessary to specify the format, since pg_restore will determine the
format automatically. If specified, it can be one of the following:`c` custom`The archive is in the custom
format of pg_dump.`d directory`The archive is a directory archive.`t tar`The archive is a `tar
archive.

• -I index --index=index

Restore definition of named index only. Multiple indexes may be specified with multiple -I switches.

• -j number-of-jobs --jobs=number-of-jobs

Run the most time-consuming steps of pg_restore — those that load data, create indexes, or create
constraints — concurrently, using up to number-of-jobs concurrent sessions. This option can dramatically
reduce the time to restore a large database to a server running on a multiprocessor machine. This option is
ignored when emitting a script rather than connecting directly to a database server.Each job is one process
or one thread, depending on the operating system, and uses a separate connection to the server.The
optimal value for this option depends on the hardware setup of the server, of the client, and of the network.
Factors include the number of CPU cores and the disk setup. A good place to start is the number of CPU
cores on the server, but values larger than that can also lead to faster restore times in many cases. Of course,
values that are too high will lead to decreased performance because of thrashing.Only the custom and
directory archive formats are supported with this option. The input must be a regular file or directory (not, for
example, a pipe or standard input). Also, multiple jobs cannot be used together with the option --single
-transaction.

• -l --list

List the table of contents of the archive. The output of this operation can be used as input to the -L option.
Note that if filtering switches such as -n or -t are used with -l, they will restrict the items listed.

• -L list-file --use-list=list-file

Restore only those archive elements that are listed in list-file, and restore them in the order they appear
in the file. Note that if filtering switches such as -n or -t are used with -L, they will further restrict the items
restored.list-file is normally created by editing the output of a previous -l operation. Lines can be moved
or removed, and can also be commented out by placing a semicolon (;) at the start of the line. See below for
examples.

• -n schema --schema=schema

Restore only objects that are in the named schema. Multiple schemas may be specified with multiple -n
switches. This can be combined with the -t option to restore just a specific table.

• -N schema --exclude-schema=schema

Do not restore objects that are in the named schema. Multiple schemas to be excluded may be specified
with multiple -N switches.When both -n and -N are given for the same schema name, the -N switch wins and
the schema is excluded.

• -O --no-owner

Do not output commands to set ownership of objects to match the original database. By default, pg_restore
issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set ownership of created schema
elements. These statements will fail unless the initial connection to the database is made by a superuser (or
the same user that owns all of the objects in the script). With -O, any user name can be used for the initial
connection, and this user will own all the created objects.

• -P function-name(argtype [, …]) --function=function-name(argtype [, …])

Restore the named function only. Be careful to spell the function name and arguments exactly as they
appear in the dump file’s table of contents. Multiple functions may be specified with multiple -P switches.

379

• -R --no-reconnect

This option is obsolete but still accepted for backwards compatibility.

• -s --schema-only

Restore only the schema (data definitions), not data, to the extent that schema entries are present in the
archive.This option is the inverse of --data-only. It is similar to, but for historical reasons not identical to,
specifying --section=pre-data --section=post-data.(Do not confuse this with the --schema option, which
uses the word “schema” in a different meaning.)

• -S username --superuser=username

Specify the superuser user name to use when disabling triggers. This is relevant only if --disable-triggers
is used.

• -t table --table=table

Restore definition and/or data of only the named table. For this purpose, “table” includes views,
materialized views, sequences, and foreign tables. Multiple tables can be selected by writing multiple -t
switches. This option can be combined with the -n option to specify table(s) in a particular
schema.NoteWhen -t is specified, pg_restore makes no attempt to restore any other database objects that
the selected table(s) might depend upon. Therefore, there is no guarantee that a specific-table restore into a
clean database will succeed.NoteThis flag does not behave identically to the -t flag of pg_dump. There is
not currently any provision for wild-card matching in pg_restore, nor can you include a schema name within
its -t. And, while pg_dump’s -t flag will also dump subsidiary objects (such as indexes) of the selected
table(s), pg_restore’s -t flag does not include such subsidiary objects.

• -T trigger --trigger=trigger

Restore named trigger only. Multiple triggers may be specified with multiple -T switches.

• -v --verbose

Specifies verbose mode. This will cause pg_restore to output detailed object comments and start/stop
times to the output file, and progress messages to standard error. Repeating the option causes additional
debug-level messages to appear on standard error.

• -V --version

Print the pg_restore version and exit.

• -x --no-privileges --no-acl

Prevent restoration of access privileges (grant/revoke commands).

• -1 --single-transaction

Execute the restore as a single transaction (that is, wrap the emitted commands in BEGIN / COMMIT). This
ensures that either all the commands complete successfully, or no changes are applied. This option implies
--exit-on-error.

• --disable-triggers

This option is relevant only when performing a data-only restore. It instructs pg_restore to execute
commands to temporarily disable triggers on the target tables while the data is restored. Use this if you have
referential integrity checks or other triggers on the tables that you do not want to invoke during data
restore.Presently, the commands emitted for --disable-triggers must be done as superuser. So you
should also specify a superuser name with -S or, preferably, run pg_restore as a IvorySQL superuser.

• --enable-row-security

This option is relevant only when restoring the contents of a table which has row security. By default,

380

pg_restore will set row_security to off, to ensure that all data is restored in to the table. If the user does not
have sufficient privileges to bypass row security, then an error is thrown. This parameter instructs pg_restore
to set row_security to on instead, allowing the user to attempt to restore the contents of the table with row
security enabled. This might still fail if the user does not have the right to insert the rows from the dump into
the table.Note that this option currently also requires the dump be in INSERT format, as COPY FROM does not
support row security.

• --if-exists

Use conditional commands (i.e., add an IF EXISTS clause) to drop database objects. This option is not valid
unless --clean is also specified.

• --no-comments

Do not output commands to restore comments, even if the archive contains them.

• --no-data-for-failed-tables

By default, table data is restored even if the creation command for the table failed (e.g., because it already
exists). With this option, data for such a table is skipped. This behavior is useful if the target database already
contains the desired table contents. For example, auxiliary tables for IvorySQL extensions such as PostGIS
might already be loaded in the target database; specifying this option prevents duplicate or obsolete data
from being loaded into them.This option is effective only when restoring directly into a database, not when
producing SQL script output.

• --no-publications

Do not output commands to restore publications, even if the archive contains them.

• --no-security-labels

Do not output commands to restore security labels, even if the archive contains them.

• --no-subscriptions

Do not output commands to restore subscriptions, even if the archive contains them.

• --no-table-access-method

Do not output commands to select table access methods. With this option, all objects will be created with
whichever access method is the default during restore.

• --no-tablespaces

Do not output commands to select tablespaces. With this option, all objects will be created in whichever
tablespace is the default during restore.

• --section=`sectionname`

Only restore the named section. The section name can be pre-data, data, or post-data. This option can be
specified more than once to select multiple sections. The default is to restore all sections.The data section
contains actual table data as well as large-object definitions. Post-data items consist of definitions of
indexes, triggers, rules and constraints other than validated check constraints. Pre-data items consist of all
other data definition items.

• --strict-names

Require that each schema (-n/--schema) and table (-t/--table) qualifier match at least one schema/table in
the backup file.

• --use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER OWNER commands to

381

https://www.IvorySQL.org/docs/current/runtime-config-client.html#GUC-ROW-SECURITY
https://www.IvorySQL.org/docs/current/runtime-config-client.html#GUC-ROW-SECURITY

determine object ownership. This makes the dump more standards-compatible, but depending on the
history of the objects in the dump, might not restore properly.

• -? --help

Show help about pg_restore command line arguments, and exit.

pg_restore also accepts the following command line arguments for connection parameters:

• -h host --host=host

Specifies the host name of the machine on which the server is running. If the value begins with a slash, it is
used as the directory for the Unix domain socket. The default is taken from the PGHOST environment variable,
if set, else a Unix domain socket connection is attempted.

• -p port --port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

• -U username --username=username

User name to connect as.

• -w --no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be useful in
batch jobs and scripts where no user is present to enter a password.

• -W --password

Force pg_restore to prompt for a password before connecting to a database.This option is never essential,
since pg_restore will automatically prompt for a password if the server demands password authentication.
However, pg_restore will waste a connection attempt finding out that the server wants a password. In some
cases it is worth typing -W to avoid the extra connection attempt.

• --role=`rolename`

Specifies a role name to be used to perform the restore. This option causes pg_restore to issue a SET ROLE
rolename command after connecting to the database. It is useful when the authenticated user (specified by
-U) lacks privileges needed by pg_restore, but can switch to a role with the required rights. Some
installations have a policy against logging in directly as a superuser, and use of this option allows restores to
be performed without violating the policy.

Environment
• PGHOST PGOPTIONS PGPORT PGUSER

Default connection parameters

• PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other IvorySQL utilities, also uses the environment variables supported by libpq.
However, it does not read PGDATABASE when a database name is not supplied.

Diagnostics
When a direct database connection is specified using the -d option, pg_restore internally executes SQL
statements. If you have problems running pg_restore, make sure you are able to select information from the

382

database using, for example, psql. Also, any default connection settings and environment variables used by
the libpq front-end library will apply.

Notes
If your installation has any local additions to the template1 database, be careful to load the output of
pg_restore into a truly empty database; otherwise you are likely to get errors due to duplicate definitions of
the added objects. To make an empty database without any local additions, copy from template0 not
template1, for example:

CREATE DATABASE foo WITH TEMPLATE template0;

The limitations of pg_restore are detailed below.

• When restoring data to a pre-existing table and the option --disable-triggers is used, pg_restore emits
commands to disable triggers on user tables before inserting the data, then emits commands to re-
enable them after the data has been inserted. If the restore is stopped in the middle, the system catalogs
might be left in the wrong state.

• pg_restore cannot restore large objects selectively; for instance, only those for a specific table. If an
archive contains large objects, then all large objects will be restored, or none of them if they are excluded
via -L, -t, or other options.

See also the pg_dump documentation for details on limitations of pg_dump.

Examples
Assume we have dumped a database called mydb into a custom-format dump file:

$ pg_dump -Fc mydb > db.dump

To drop the database and recreate it from the dump:

$ dropdb mydb
$ pg_restore -C -d postgres db.dump

The database named in the -d switch can be any database existing in the cluster; pg_restore only uses it to
issue the CREATE DATABASE command for mydb. With -C, data is always restored into the database name that
appears in the dump file.

To restore the dump into a new database called newdb:

$ createdb -T template0 newdb
$ pg_restore -d newdb db.dump

Notice we don’t use -C, and instead connect directly to the database to be restored into. Also note that we
clone the new database from template0 not template1, to ensure it is initially empty.

To reorder database items, it is first necessary to dump the table of contents of the archive:

$ pg_restore -l db.dump > db.list

383

https://www.IvorySQL.org/docs/current/app-psql.html
https://www.IvorySQL.org/docs/current/app-pgdump.html

The listing file consists of a header and one line for each item, e.g.:

;
; Archive created at Mon Sep 14 13:55:39 2009
; dbname: DBDEMOS
; TOC Entries: 81
; Compression: 9
; Dump Version: 1.10-0
; Format: CUSTOM
; Integer: 4 bytes
; Offset: 8 bytes
; Dumped from database version: 8.3.5
; Dumped by pg_dump version: 8.3.8
;
;
; Selected TOC Entries:
;
3; 2615 2200 SCHEMA - public pasha
1861; 0 0 COMMENT - SCHEMA public pasha
1862; 0 0 ACL - public pasha
317; 1247 17715 TYPE public composite pasha
319; 1247 25899 DOMAIN public domain0 pasha

Semicolons start a comment, and the numbers at the start of lines refer to the internal archive ID assigned to
each item.

Lines in the file can be commented out, deleted, and reordered. For example:

10; 145433 TABLE map_resolutions postgres
;2; 145344 TABLE species postgres
;4; 145359 TABLE nt_header postgres
6; 145402 TABLE species_records postgres
;8; 145416 TABLE ss_old postgres

could be used as input to pg_restore and would only restore items 10 and 6, in that order:

$ pg_restore -L db.list db.dump

pg_verifybackup
pg_verifybackup — verify the integrity of a base backup of a IvorySQL cluster

Synopsis

pg_verifybackup [option…]

384

Options
pg_verifybackup accepts the following command-line arguments:

• -e --exit-on-error

Exit as soon as a problem with the backup is detected. If this option is not specified, pg_verifybackup will
continue checking the backup even after a problem has been detected, and will report all problems
detected as errors.

• -i path --ignore=path

Ignore the specified file or directory, which should be expressed as a relative path name, when comparing
the list of data files actually present in the backup to those listed in the backup_manifest file. If a directory is
specified, this option affects the entire subtree rooted at that location. Complaints about extra files, missing
files, file size differences, or checksum mismatches will be suppressed if the relative path name matches the
specified path name. This option can be specified multiple times.

• -m path --manifest-path=path

Use the manifest file at the specified path, rather than one located in the root of the backup directory.

• -n --no-parse-wal

Don’t attempt to parse write-ahead log data that will be needed to recover from this backup.

• -q --quiet

Don’t print anything when a backup is successfully verified.

• -s --skip-checksums

Do not verify data file checksums. The presence or absence of files and the sizes of those files will still be
checked. This is much faster, because the files themselves do not need to be read.

• -w path --wal-directory=path

Try to parse WAL files stored in the specified directory, rather than in pg_wal. This may be useful if the backup
is stored in a separate location from the WAL archive.

Other options are also available:

• -V --version

Print the pg_verifybackup version and exit.

• -? --help

Show help about pg_verifybackup command line arguments, and exit.

Examples
To create a base backup of the server at mydbserver and verify the integrity of the backup:

$ pg_basebackup -h mydbserver -D /usr/local/pgsql/data
$ pg_verifybackup /usr/local/pgsql/data

To create a base backup of the server at mydbserver, move the manifest somewhere outside the backup
directory, and verify the backup:

385

$ pg_basebackup -h mydbserver -D /usr/local/pgsql/backup1234
$ mv /usr/local/pgsql/backup1234/backup_manifest
/my/secure/location/backup_manifest.1234
$ pg_verifybackup -m /my/secure/location/backup_manifest.1234
/usr/local/pgsql/backup1234

To verify a backup while ignoring a file that was added manually to the backup directory, and also skipping
checksum verification:

$ pg_basebackup -h mydbserver -D /usr/local/pgsql/data
$ edit /usr/local/pgsql/data/note.to.self
$ pg_verifybackup --ignore=note.to.self --skip-checksums /usr/local/pgsql/data

psql
psql — IvorySQL interactive terminal

Synopsis

psql [option…] [dbname [username]]

Options
• -a --echo-all

Print all nonempty input lines to standard output as they are read. (This does not apply to lines read
interactively.) This is equivalent to setting the variable ECHO to all.

• -A --no-align

Switches to unaligned output mode. (The default output mode is aligned.) This is equivalent to \pset
format unaligned.

• -b --echo-errors

Print failed SQL commands to standard error output. This is equivalent to setting the variable ECHO to errors.

• -c command --command=command

Specifies that psql is to execute the given command string, command. This option can be repeated and
combined in any order with the -f option. When either -c or -f is specified, psql does not read commands
from standard input; instead it terminates after processing all the -c and -f options in sequence.command
must be either a command string that is completely parsable by the server (i.e., it contains no psql-specific
features), or a single backslash command. Thus you cannot mix SQL and psql meta-commands within a -c
option. To achieve that, you could use repeated -c options or pipe the string into psql, for example:`psql -c
'\x' -c 'SELECT * FROM foo;' or`echo '\x \\ SELECT * FROM foo;' | psql `(\\` is the separator meta-
command.)Each SQL command string passed to -c is sent to the server as a single request. Because of this,
the server executes it as a single transaction even if the string contains multiple SQL commands, unless there
are explicit BEGIN/COMMIT commands included in the string to divide it into multiple transactions.If having
several commands executed in one transaction is not desired, use repeated -c commands or feed multiple
commands to psql’s standard input, either using echo as illustrated above, or via a shell here-document,
for example:`psql <<EOF \x SELECT * FROM foo; EOF `

• --csv

386

Switches to CSV (Comma-Separated Values) output mode. This is equivalent to \pset format csv.

• -d dbname --dbname=dbname

Specifies the name of the database to connect to. This is equivalent to specifying dbname as the first non-
option argument on the command line. The dbname can be a connection string. If so, connection string
parameters will override any conflicting command line options.

• -e --echo-queries

Copy all SQL commands sent to the server to standard output as well. This is equivalent to setting the
variable ECHO to queries.

• -E --echo-hidden

Echo the actual queries generated by \d and other backslash commands. You can use this to study psql’s
internal operations. This is equivalent to setting the variable ECHO_HIDDEN to on.

• -f filename --file=filename

Read commands from the file filename, rather than standard input. This option can be repeated and
combined in any order with the -c option. When either -c or -f is specified, psql does not read commands
from standard input; instead it terminates after processing all the -c and -f options in sequence. Except for
that, this option is largely equivalent to the meta-command \i.If filename is - (hyphen), then standard input
is read until an EOF indication or \q meta-command. This can be used to intersperse interactive input with
input from files. Note however that Readline is not used in this case (much as if -n had been specified).Using
this option is subtly different from writing psql < `filename. In general, both will do what you
expect, but using `-f enables some nice features such as error messages with line numbers. There is also
a slight chance that using this option will reduce the start-up overhead. On the other hand, the variant using
the shell’s input redirection is (in theory) guaranteed to yield exactly the same output you would have
received had you entered everything by hand.

• -F separator --field-separator=separator

Use separator as the field separator for unaligned output. This is equivalent to \pset fieldsep or \f.

• -h hostname --host=hostname

Specifies the host name of the machine on which the server is running. If the value begins with a slash, it is
used as the directory for the Unix-domain socket.

• -H --html

Switches to HTML output mode. This is equivalent to \pset format html or the \H command.

• -l --list

List all available databases, then exit. Other non-connection options are ignored. This is similar to the meta-
command \list.When this option is used, psql will connect to the database postgres, unless a different
database is named on the command line (option -d or non-option argument, possibly via a service entry,
but not via an environment variable).

• -L filename --log-file=filename

Write all query output into file filename, in addition to the normal output destination.

• -n --no-readline

Do not use Readline for line editing and do not use the command history

• -o filename --output=filename

Put all query output into file filename. This is equivalent to the command \o.

387

https://www.IvorySQL.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

• -p port --port=port

Specifies the TCP port or the local Unix-domain socket file extension on which the server is listening for
connections. Defaults to the value of the PGPORT environment variable or, if not set, to the port specified at
compile time, usually 5432.

• -P assignment --pset=assignment

Specifies printing options, in the style of \pset. Note that here you have to separate name and value with an
equal sign instead of a space. For example, to set the output format to LaTeX, you could write -P
format=latex.

• -q --quiet

Specifies that psql should do its work quietly. By default, it prints welcome messages and various
informational output. If this option is used, none of this happens. This is useful with the -c option. This is
equivalent to setting the variable QUIET to on.

• -R separator --record-separator=separator

Use separator as the record separator for unaligned output. This is equivalent to \pset recordsep.

• -s --single-step

Run in single-step mode. That means the user is prompted before each command is sent to the server, with
the option to cancel execution as well. Use this to debug scripts.

• -S --single-line

Runs in single-line mode where a newline terminates an SQL command, as a semicolon does.NoteThis
mode is provided for those who insist on it, but you are not necessarily encouraged to use it. In particular, if
you mix SQL and meta-commands on a line the order of execution might not always be clear to the
inexperienced user.

• -t --tuples-only

Turn off printing of column names and result row count footers, etc. This is equivalent to \t or \pset
tuples_only.

• -T table_options --table-attr=table_options

Specifies options to be placed within the HTML table tag. See \pset tableattr for details.

• -U `username` --username=`username`

Connect to the database as the user username instead of the default. (You must have permission to do so, of
course.)

• -v assignment --set=assignment --variable=assignment

Perform a variable assignment, like the \set meta-command. Note that you must separate name and value,
if any, by an equal sign on the command line. To unset a variable, leave off the equal sign. To set a variable
with an empty value, use the equal sign but leave off the value. These assignments are done during
command line processing, so variables that reflect connection state will get overwritten later.

• -V --version

Print the psql version and exit.

• -w --no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available from other sources such as a .pgpass file, the connection attempt will fail. This option can be

388

useful in batch jobs and scripts where no user is present to enter a password.Note that this option will
remain set for the entire session, and so it affects uses of the meta-command \connect as well as the initial
connection attempt.

• -W --password

Force psql to prompt for a password before connecting to a database, even if the password will not be
used.If the server requires password authentication and a password is not available from other sources such
as a .pgpass file, psql will prompt for a password in any case. However, psql will waste a connection attempt
finding out that the server wants a password. In some cases it is worth typing -W to avoid the extra
connection attempt.Note that this option will remain set for the entire session, and so it affects uses of the
meta-command \connect as well as the initial connection attempt.

• -x --expanded

Turn on the expanded table formatting mode. This is equivalent to \x or \pset expanded.

• -X, --no-psqlrc

Do not read the start-up file (neither the system-wide psqlrc file nor the user’s ~/.psqlrc file).

• -z --field-separator-zero

Set the field separator for unaligned output to a zero byte. This is equivalent to \pset fieldsep_zero.

• -0 --record-separator-zero

Set the record separator for unaligned output to a zero byte. This is useful for interfacing, for example, with
xargs -0. This is equivalent to \pset recordsep_zero.

• -1 --single-transaction

This option can only be used in combination with one or more -c and/or -f options. It causes psql to issue a
BEGIN command before the first such option and a COMMIT command after the last one, thereby wrapping all
the commands into a single transaction. If any of the commands fails and the variable ON_ERROR_STOP was
set, a ROLLBACK command is sent instead. This ensures that either all the commands complete successfully,
or no changes are applied.If the commands themselves contain BEGIN, COMMIT, or ROLLBACK, this option will
not have the desired effects. Also, if an individual command cannot be executed inside a transaction block,
specifying this option will cause the whole transaction to fail.

• -? --help[=`topic]`

Show help about psql and exit. The optional topic parameter (defaulting to options) selects which part of
psql is explained: commands describes psql’s backslash commands; options describes the command-line
options that can be passed to psql; and variables shows help about psql configuration variables.

Exit Status
psql returns 0 to the shell if it finished normally, 1 if a fatal error of its own occurs (e.g., out of memory, file not
found), 2 if the connection to the server went bad and the session was not interactive, and 3 if an error
occurred in a script and the variable ON_ERROR_STOP was set.

reindexdb
reindexdb — reindex a IvorySQL database

Synopsis

reindexdb [connection-option…] [option…] [-S | --schema schema] … [-t | --table table] … [-i | --index
index] … [dbname]

389

reindexdb` [*`connection-option`*...] [*`option`*...] `-a` | `--all

reindexdb [connection-option…] [option…] -s | --system [dbname]

Options
reindexdb accepts the following command-line arguments:

• -a --all

Reindex all databases.

• --concurrently

Use the CONCURRENTLY option. See REINDEX, where all the caveats of this option are explained in detail.

• [-d] dbname dbname

Specifies the name of the database to be reindexed, when -a/--all is not used. If this is not specified, the
database name is read from the environment variable PGDATABASE. If that is not set, the user name specified
for the connection is used. The dbname can be a connection string. If so, connection string parameters will
override any conflicting command line options.

• -e --echo

Echo the commands that reindexdb generates and sends to the server.

• -i index --index=index

Recreate index only. Multiple indexes can be recreated by writing multiple -i switches.

• -j njobs --jobs=njobs

Execute the reindex commands in parallel by running njobs commands simultaneously. This option may
reduce the processing time but it also increases the load on the database server.reindexdb will open njobs
connections to the database, so make sure your max_connections setting is high enough to accommodate
all connections.Note that this option is incompatible with the --index and --system options.

• -q --quiet

Do not display progress messages.

• -s --system

Reindex database’s system catalogs only.

• -S schema --schema=schema

Reindex schema only. Multiple schemas can be reindexed by writing multiple -S switches.

• -t table --table=table

Reindex table only. Multiple tables can be reindexed by writing multiple -t switches.

• --tablespace=tablespace

Specifies the tablespace where indexes are rebuilt. (This name is processed as a double-quoted identifier.)

• -v --verbose

390

https://www.IvorySQL.org/docs/current/sql-reindex.html
https://www.IvorySQL.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://www.IvorySQL.org/docs/current/runtime-config-connection.html#GUC-MAX-CONNECTIONS

Print detailed information during processing.

• -V --version

Print the reindexdb version and exit.

• -? --help

Show help about reindexdb command line arguments, and exit.

reindexdb also accepts the following command-line arguments for connection parameters:

• -h host --host=host

Specifies the host name of the machine on which the server is running. If the value begins with a slash, it is
used as the directory for the Unix domain socket.

• -p port --port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections.

• -U username --username=username

User name to connect as.

• -w --no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be useful in
batch jobs and scripts where no user is present to enter a password.

• -W --password

Force reindexdb to prompt for a password before connecting to a database.This option is never essential,
since reindexdb will automatically prompt for a password if the server demands password authentication.
However, reindexdb will waste a connection attempt finding out that the server wants a password. In some
cases it is worth typing -W to avoid the extra connection attempt.

• --maintenance-db=dbname

Specifies the name of the database to connect to to discover which databases should be reindexed, when -a
/ --all is used. If not specified, the postgres database will be used, or if that does not exist, template1 will
be used. This can be a connection string. If so, connection string parameters will override any conflicting
command line options. Also, connection string parameters other than the database name itself will be re-
used when connecting to other databases.

Environment
• PGDATABASE PGHOST PGPORT PGUSER

Default connection parameters

• PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other IvorySQL utilities, also uses the environment variables supported by libpq .

391

https://www.IvorySQL.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

Diagnostics
In case of difficulty, see REINDEX and psql for discussions of potential problems and error messages. The
database server must be running at the targeted host. Also, any default connection settings and
environment variables used by the libpq front-end library will apply.

Notes
reindexdb might need to connect several times to the IvorySQL server, asking for a password each time. It is
convenient to have a ~/.pgpass file in such cases.

Examples
To reindex the database test:

$ reindexdb test

To reindex the table foo and the index bar in a database named abcd:

$ reindexdb --table=foo --index=bar abcd

vacuumdb
vacuumdb — garbage-collect and analyze a IvorySQL database

Synopsis

vacuumdb [connection-option…] [option…] [-t | --table table [(column [,…])]] … [dbname]

vacuumdb` [*`connection-option`*...] [*`option`*...] `-a` | `--all

Options
vacuumdb accepts the following command-line arguments:

• -a --all

Vacuum all databases.

• [-d] `dbname` `dbname`

Specifies the name of the database to be cleaned or analyzed, when -a/--all is not used. If this is not
specified, the database name is read from the environment variable PGDATABASE. If that is not set, the user
name specified for the connection is used. The dbname can be a connection string. If so, connection string
parameters will override any conflicting command line options.

• --disable-page-skipping

Disable skipping pages based on the contents of the visibility map.

• -e --echo

Echo the commands that vacuumdb generates and sends to the server.

392

https://www.IvorySQL.org/docs/current/sql-reindex.html
https://www.IvorySQL.org/docs/current/app-psql.html
https://www.IvorySQL.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

• -f --full

Perform “full” vacuuming.

• -F --freeze

Aggressively “freeze” tuples.

• --force-index-cleanup

Always remove index entries pointing to dead tuples.

• -j njobs --jobs=njobs

Execute the vacuum or analyze commands in parallel by running njobs commands simultaneously. This
option may reduce the processing time but it also increases the load on the database server.vacuumdb will
open njobs connections to the database, so make sure your max_connections setting is high enough to
accommodate all connections.Note that using this mode together with the -f (FULL) option might cause
deadlock failures if certain system catalogs are processed in parallel.

• --min-mxid-age mxid_age

Only execute the vacuum or analyze commands on tables with a multixact ID age of at least mxid_age. This
setting is useful for prioritizing tables to process to prevent multixact ID wraparound .For the purposes of this
option, the multixact ID age of a relation is the greatest of the ages of the main relation and its associated
TOAST table, if one exists. Since the commands issued by vacuumdb will also process the TOAST table for
the relation if necessary, it does not need to be considered separately.

• --min-xid-age xid_age

Only execute the vacuum or analyze commands on tables with a transaction ID age of at least xid_age. This
setting is useful for prioritizing tables to process to prevent transaction ID wraparound.For the purposes of
this option, the transaction ID age of a relation is the greatest of the ages of the main relation and its
associated TOAST table, if one exists. Since the commands issued by vacuumdb will also process the TOAST
table for the relation if necessary, it does not need to be considered separately.

• --no-index-cleanup

Do not remove index entries pointing to dead tuples.

• --no-process-toast

Skip the TOAST table associated with the table to vacuum, if any.

• --no-truncate

Do not truncate empty pages at the end of the table.

• -P parallel_workers --parallel=parallel_workers

Specify the number of parallel workers for parallel vacuum. This allows the vacuum to leverage multiple
CPUs to process indexes. See VACUUM.

• -q --quiet

Do not display progress messages.

• --skip-locked

Skip relations that cannot be immediately locked for processing

• -t `table [(column [,…])]` --table=`table [(column [,…])]`

393

https://www.IvorySQL.org/docs/current/runtime-config-connection.html#GUC-MAX-CONNECTIONS
https://www.IvorySQL.org/docs/current/sql-vacuum.html

Clean or analyze table only. Column names can be specified only in conjunction with the --analyze or
--analyze-only options. Multiple tables can be vacuumed by writing multiple -t switches.TipIf you specify
columns, you probably have to escape the parentheses from the shell. (See examples below.)

• -v --verbose

Print detailed information during processing.

• -V --version

Print the vacuumdb version and exit.

• -z --analyze

Also calculate statistics for use by the optimizer.

• -Z --analyze-only

Only calculate statistics for use by the optimizer (no vacuum).

• --analyze-in-stages

Only calculate statistics for use by the optimizer (no vacuum), like --analyze-only. Run three stages of
analyze; the first stage uses the lowest possible statistics target and subsequent stages build the full
statistics.This option is only useful to analyze a database that currently has no statistics or has wholly
incorrect ones, such as if it is newly populated from a restored dump or by pg_upgrade. Be aware that
running with this option in a database with existing statistics may cause the query optimizer choices to
become transiently worse due to the low statistics targets of the early stages.

• -? --help

Show help about vacuumdb command line arguments, and exit.

vacuumdb also accepts the following command-line arguments for connection parameters:

• -h `host` --host=`host`

Specifies the host name of the machine on which the server is running. If the value begins with a slash, it is
used as the directory for the Unix domain socket.

• -p `port` --port=`port`

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections.

• -U `username` --username=`username`

User name to connect as.

• -w --no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be useful in
batch jobs and scripts where no user is present to enter a password.

• -W --password

Force vacuumdb to prompt for a password before connecting to a database.This option is never essential,
since vacuumdb will automatically prompt for a password if the server demands password authentication.
However, vacuumdb will waste a connection attempt finding out that the server wants a password. In some
cases it is worth typing -W to avoid the extra connection attempt.

394

• --maintenance-db=dbname

Specifies the name of the database to connect to to discover which databases should be vacuumed, when
-a / --all is used. If not specified, the postgres database will be used, or if that does not exist, template1 will
be used. This can be a connection string. If so, connection string parameters will override any conflicting
command line options. Also, connection string parameters other than the database name itself will be re-
used when connecting to other databases.

Environment
• PGDATABASE PGHOST PGPORT PGUSER

Default connection parameters

• PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other IvorySQL utilities, also uses the environment variables supported by libpq.

Diagnostics
In case of difficulty, see VACUUM and psql for discussions of potential problems and error messages. The
database server must be running at the targeted host. Also, any default connection settings and
environment variables used by the libpq front-end library will apply.

Notes
vacuumdb might need to connect several times to the IvorySQL server, asking for a password each time. It is
convenient to have a ~/.pgpass file in such cases.

Examples
To clean the database test:

$ vacuumdb test

To clean and analyze for the optimizer a database named bigdb:

$ vacuumdb --analyze bigdb

To clean a single table foo in a database named xyzzy, and analyze a single column bar of the table for the
optimizer:

$ vacuumdb --analyze --verbose --table='foo(bar)' xyzzy

Server Applications
initdb
initdb — create a new IvorySQL database cluster

395

https://www.IvorySQL.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://www.IvorySQL.org/docs/current/sql-vacuum.html
https://www.IvorySQL.org/docs/current/app-psql.html

Synopsis

initdb [option…] [--pgdata | -D] directory

Options
• -A authmethod --auth=authmethod

This option specifies the default authentication method for local users used in pg_hba.conf (host and local
lines). Do not use trust unless you trust all local users on your system. trust is the default for ease of
installation.

• --auth-host=`authmethod`

This option specifies the authentication method for local users via TCP/IP connections used in pg_hba.conf
(host lines).

• --auth-local=`authmethod`

This option specifies the authentication method for local users via Unix-domain socket connections used in
pg_hba.conf (local lines).

• -D directory --pgdata=directory

This option specifies the directory where the database cluster should be stored. This is the only information
required by initdb, but you can avoid writing it by setting the PGDATA environment variable, which can be
convenient since the database server (postgres) can find the database directory later by the same variable.

• -E `encoding` --encoding=`encoding`

Selects the encoding of the template databases. This will also be the default encoding of any database you
create later, unless you override it then. The default is derived from the locale, if the libc locale provider is
used, or UTF8 if the ICU locale provider is used.

• -g --allow-group-access

Allows users in the same group as the cluster owner to read all cluster files created by initdb. This option is
ignored on Windows as it does not support POSIX-style group permissions.

• --icu-locale=locale

Specifies the ICU locale ID, if the ICU locale provider is used.

• -k --data-checksums

Use checksums on data pages to help detect corruption by the I/O system that would otherwise be silent.
Enabling checksums may incur a noticeable performance penalty. If set, checksums are calculated for all
objects, in all databases. All checksum failures will be reported in the pg_stat_database view.

• --locale=locale

Sets the default locale for the database cluster. If this option is not specified, the locale is inherited from the
environment that initdb runs in.

• --lc-collate=locale --lc-ctype=locale --lc-messages=locale --lc-monetary=locale --lc-
numeric=locale --lc-time=locale

Like --locale, but only sets the locale in the specified category.

• --no-locale

Equivalent to --locale=C.

396

https://www.IvorySQL.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-DATABASE-VIEW

• --locale-provider={libc|icu}

This option sets the locale provider for databases created in the new cluster. It can be overridden in the
CREATE DATABASE command when new databases are subsequently created. The default is libc.

• -N --no-sync

By default, initdb will wait for all files to be written safely to disk. This option causes initdb to return
without waiting, which is faster, but means that a subsequent operating system crash can leave the data
directory corrupt. Generally, this option is useful for testing, but should not be used when creating a
production installation.

• --no-instructions

By default, initdb will write instructions for how to start the cluster at the end of its output. This option
causes those instructions to be left out. This is primarily intended for use by tools that wrap initdb in
platform-specific behavior, where those instructions are likely to be incorrect.

• --pwfile=filename

Makes initdb read the database superuser’s password from a file. The first line of the file is taken as the
password.

• -S --sync-only

Safely write all database files to disk and exit. This does not perform any of the normal initdb operations.
Generally, this option is useful for ensuring reliable recovery after changing fsync from off to on.

• -T config --text-search-config=config

Sets the default text search configuration.

• -U username --username=username

Selects the user name of the database superuser. This defaults to the name of the effective user running
initdb. It is really not important what the superuser’s name is, but one might choose to keep the
customary name postgres, even if the operating system user’s name is different.

• -W --pwprompt

Makes initdb prompt for a password to give the database superuser. If you don’t plan on using password
authentication, this is not important. Otherwise you won’t be able to use password authentication until
you have a password set up.

• -X directory --waldir=directory

This option specifies the directory where the write-ahead log should be stored.

• --wal-segsize=size

Set the WAL segment size, in megabytes. This is the size of each individual file in the WAL log. The default size
is 16 megabytes. The value must be a power of 2 between 1 and 1024 (megabytes). This option can only be
set during initialization, and cannot be changed later.It may be useful to adjust this size to control the
granularity of WAL log shipping or archiving. Also, in databases with a high volume of WAL, the sheer number
of WAL files per directory can become a performance and management problem. Increasing the WAL file size
will reduce the number of WAL files.

Other, less commonly used, options are also available:

• -d --debug

Print debugging output from the bootstrap backend and a few other messages of lesser interest for the
general public. The bootstrap backend is the program initdb uses to create the catalog tables. This option

397

https://www.IvorySQL.org/docs/current/runtime-config-wal.html#GUC-FSYNC

generates a tremendous amount of extremely boring output.

• --discard-caches

Run the bootstrap backend with the debug_discard_caches=1 option. This takes a very long time and is only
of use for deep debugging.

• -L directory

Specifies where initdb should find its input files to initialize the database cluster. This is normally not
necessary. You will be told if you need to specify their location explicitly.

• -n --no-clean

By default, when initdb determines that an error prevented it from completely creating the database
cluster, it removes any files it might have created before discovering that it cannot finish the job. This option
inhibits tidying-up and is thus useful for debugging.

Other options:

• -V --version

Print the initdb version and exit.

• -? --help

Show help about initdb command line arguments, and exit.

Environment
• PGDATA

Specifies the directory where the database cluster is to be stored; can be overridden using the -D option.

• PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

• TZ

Specifies the default time zone of the created database cluster. The value should be a full time zone name

This utility, like most other IvorySQL utilities, also uses the environment variables supported by libpq

Notes
initdb can also be invoked via pg_ctl initdb.

pg_archivecleanup
pg_archivecleanup — clean up IvorySQL WAL archive files

Synopsis

pg_archivecleanup [option…] archivelocation oldestkeptwalfile

To configure a standby server to use pg_archivecleanup, put this into its IvorySQL.conf configuration file:

archive_cleanup_command = 'pg_archivecleanup archivelocation %r'

398

where archivelocation is the directory from which WAL segment files should be removed.

When used within archive_cleanup_command, all WAL files logically preceding the value of the %r argument
will be removed from archivelocation. This minimizes the number of files that need to be retained, while
preserving crash-restart capability. Use of this parameter is appropriate if the archivelocation is a transient
staging area for this particular standby server, but not when the archivelocation is intended as a long-term
WAL archive area, or when multiple standby servers are recovering from the same archive location.

When used as a standalone program all WAL files logically preceding the oldestkeptwalfile will be removed
from archivelocation. In this mode, if you specify a .partial or .backup file name, then only the file prefix
will be used as the oldestkeptwalfile. This treatment of .backup file name allows you to remove all WAL
files archived prior to a specific base backup without error. For example, the following example will remove
all files older than WAL file name 000000010000003700000010:

pg_archivecleanup -d archive 000000010000003700000010.00000020.backup

pg_archivecleanup: keep WAL file "archive/000000010000003700000010" and later
pg_archivecleanup: removing file "archive/00000001000000370000000F"
pg_archivecleanup: removing file "archive/00000001000000370000000E"

pg_archivecleanup assumes that archivelocation is a directory readable and writable by the server-owning
user.

Options
pg_archivecleanup accepts the following command-line arguments:

• -d

Print lots of debug logging output on stderr.

• -n

Print the names of the files that would have been removed on stdout (performs a dry run).

• -V --version

Print the pg_archivecleanup version and exit.

• -x extension

Provide an extension that will be stripped from all file names before deciding if they should be deleted. This
is typically useful for cleaning up archives that have been compressed during storage, and therefore have
had an extension added by the compression program. For example: -x .gz.

• -? --help

Show help about pg_archivecleanup command line arguments, and exit.

Environment
The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible values
are always, auto and never.

Examples
On Linux or Unix systems, you might use:

399

https://www.IvorySQL.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-CLEANUP-COMMAND

archive_cleanup_command = 'pg_archivecleanup -d /mnt/standby/archive %r
2>>cleanup.log'

where the archive directory is physically located on the standby server, so that the archive_command is
accessing it across NFS, but the files are local to the standby. This will:

• produce debugging output in cleanup.log
• remove no-longer-needed files from the archive directory

pg_checksums
pg_checksums — enable, disable or check data checksums in a IvorySQL database cluster

Synopsis

pg_checksums [option…] [[-D | --pgdata] datadir]

Options
The following command-line options are available:

• -D directory --pgdata=directory

Specifies the directory where the database cluster is stored.

• -c --check

Checks checksums. This is the default mode if nothing else is specified.

• -d --disable

Disables checksums.

• -e --enable

Enables checksums.

• -f filenode --filenode=filenode

Only validate checksums in the relation with filenode filenode.

• -N --no-sync

By default, pg_checksums will wait for all files to be written safely to disk. This option causes pg_checksums to
return without waiting, which is faster, but means that a subsequent operating system crash can leave the
updated data directory corrupt. Generally, this option is useful for testing but should not be used on a
production installation. This option has no effect when using --check.

• -P --progress

Enable progress reporting. Turning this on will deliver a progress report while checking or enabling
checksums.

• -v --verbose

Enable verbose output. Lists all checked files.

• -V --version

400

Print the pg_checksums version and exit.

• -? --help

Show help about pg_checksums command line arguments, and exit.

Environment
• PGDATA

Specifies the directory where the database cluster is stored; can be overridden using the -D option.

• PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

Notes
Enabling checksums in a large cluster can potentially take a long time. During this operation, the cluster or
other programs that write to the data directory must not be started or else data loss may occur.

When using a replication setup with tools which perform direct copies of relation file blocks (for example
pg_rewind), enabling or disabling checksums can lead to page corruptions in the shape of incorrect
checksums if the operation is not done consistently across all nodes. When enabling or disabling checksums
in a replication setup, it is thus recommended to stop all the clusters before switching them all consistently.
Destroying all standbys, performing the operation on the primary and finally recreating the standbys from
scratch is also safe.

If pg_checksums is aborted or killed while enabling or disabling checksums, the cluster’s data checksum
configuration remains unchanged, and pg_checksums can be re-run to perform the same operation.

pg_controldata
pg_controldata — display control information of a IvorySQL database cluster

Synopsis
pg_controldata [option] [[-D | --pgdata] datadir]

Environment
• PGDATA

Default data directory location

• PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

pg_ctl
pg_ctl — initialize, start, stop, or control a IvorySQL server

Synopsis
pg_ctl init[db] [-D datadir] [-s] [-o initdb-options]

pg_ctl start [-D datadir] [-l filename] [-W] [-t seconds] [-s] [-o options] [-p path] [-c]

pg_ctl stop [-D datadir] [-m s[mart] | f[ast] | i[mmediate]] [-W] [-t seconds] [-s]

401

https://www.IvorySQL.org/docs/current/app-pgrewind.html

pg_ctl restart [-D datadir] [-m s[mart] | f[ast] | i[mmediate]] [-W] [-t seconds] [-s] [-o options] [-c]

pg_ctl reload [-D datadir] [-s]

pg_ctl status [-D datadir]

pg_ctl promote [-D datadir] [-W] [-t seconds] [-s]

pg_ctl logrotate [-D datadir] [-s]

pg_ctl kill signal_name process_id

On Microsoft Windows, also:

pg_ctl register [-D datadir] [-N servicename] [-U username] [-P password] [-S a[uto] | d[emand]] [-e source]
[-W] [-t seconds] [-s] [-o options]

pg_ctl unregister [-N servicename]

Options
• -c --core-files

Attempt to allow server crashes to produce core files, on platforms where this is possible, by lifting any soft
resource limit placed on core files. This is useful in debugging or diagnosing problems by allowing a stack
trace to be obtained from a failed server process.

• -D datadir --pgdata=datadir

Specifies the file system location of the database configuration files. If this option is omitted, the
environment variable PGDATA is used.

• -l filename --log=filename

Append the server log output to filename. If the file does not exist, it is created. The umask is set to 077, so
access to the log file is disallowed to other users by default.

• -m mode --mode=mode

Specifies the shutdown mode. mode can be smart, fast, or immediate, or the first letter of one of these three.
If this option is omitted, fast is the default.

• -o options --options=options

Specifies options to be passed directly to the postgres command. -o can be specified multiple times, with
all the given options being passed through.The options should usually be surrounded by single or double
quotes to ensure that they are passed through as a group.

• -o initdb-options --options=initdb-options

Specifies options to be passed directly to the initdb command. -o can be specified multiple times, with all
the given options being passed through.The initdb-options should usually be surrounded by single or
double quotes to ensure that they are passed through as a group.

• -p path

Specifies the location of the postgres executable. By default the postgres executable is taken from the same
directory as pg_ctl, or failing that, the hard-wired installation directory. It is not necessary to use this option
unless you are doing something unusual and get errors that the postgres executable was not found.In init
mode, this option analogously specifies the location of the initdb executable.

• -s --silent

402

Print only errors, no informational messages.

• -t seconds --timeout=seconds

Specifies the maximum number of seconds to wait when waiting for an operation to complete (see option -
w). Defaults to the value of the PGCTLTIMEOUT environment variable or, if not set, to 60 seconds.

• -V --version

Print the pg_ctl version and exit.

• -w --wait

Wait for the operation to complete. This is supported for the modes start, stop, restart, promote, and
register, and is the default for those modes.When waiting, pg_ctl repeatedly checks the server’s PID file,
sleeping for a short amount of time between checks. Startup is considered complete when the PID file
indicates that the server is ready to accept connections. Shutdown is considered complete when the server
removes the PID file. pg_ctl returns an exit code based on the success of the startup or shutdown.If the
operation does not complete within the timeout (see option -t), then pg_ctl exits with a nonzero exit status.
But note that the operation might continue in the background and eventually succeed.

• -W --no-wait

Do not wait for the operation to complete. This is the opposite of the option -w.If waiting is disabled, the
requested action is triggered, but there is no feedback about its success. In that case, the server log file or an
external monitoring system would have to be used to check the progress and success of the operation.In
prior releases of IvorySQL, this was the default except for the stop mode.

• -? --help

Show help about pg_ctl command line arguments, and exit.

If an option is specified that is valid, but not relevant to the selected operating mode, pg_ctl ignores it.

Options for Windows
• -e source

Name of the event source for pg_ctl to use for logging to the event log when running as a Windows service.
The default is IvorySQL. Note that this only controls messages sent from pg_ctl itself; once started, the server
will use the event source specified by its event_source parameter. Should the server fail very early in startup,
before that parameter has been set, it might also log using the default event source name IvorySQL.

• -N `servicename`

Name of the system service to register. This name will be used as both the service name and the display
name. The default is IvorySQL.

• -P `password`

Password for the user to run the service as.

• -S start-type

Start type of the system service. start-type can be auto, or demand, or the first letter of one of these two. If
this option is omitted, auto is the default.

• -U username

User name for the user to run the service as. For domain users, use the format DOMAIN\username.

403

https://www.IvorySQL.org/docs/current/runtime-config-logging.html#GUC-EVENT-SOURCE

Environment
• PGCTLTIMEOUT

Default limit on the number of seconds to wait when waiting for startup or shutdown to complete. If not set,
the default is 60 seconds.

• PGDATA

Default data directory location.

Most pg_ctl modes require knowing the data directory location; therefore, the -D option is required unless
PGDATA is set.

pg_ctl, like most other IvorySQL utilities, also uses the environment variables supported by libpq

Files
• postmaster.pid

pg_ctl examines this file in the data directory to determine whether the server is currently running.

• postmaster.opts

If this file exists in the data directory, pg_ctl (in restart mode) will pass the contents of the file as options to
postgres, unless overridden by the -o option. The contents of this file are also displayed in status mode.

Examples

Starting the Server

To start the server, waiting until the server is accepting connections:

$ pg_ctl start

To start the server using port 5433, and running without fsync, use:

$ pg_ctl -o "-F -p 5433" start

Stopping the Server

To stop the server, use:

$ pg_ctl stop

The -m option allows control over how the server shuts down:

$ pg_ctl stop -m smart

Restarting the Server

Restarting the server is almost equivalent to stopping the server and starting it again, except that by default,
pg_ctl saves and reuses the command line options that were passed to the previously-running instance. To
restart the server using the same options as before, use:

404

$ pg_ctl restart

But if -o is specified, that replaces any previous options. To restart using port 5433, disabling fsync upon
restart:

$ pg_ctl -o "-F -p 5433" restart

Showing the Server Status

Here is sample status output from pg_ctl:

$ pg_ctl status

pg_ctl: server is running (PID: 13718)
/usr/local/pgsql/bin/postgres "-D" "/usr/local/pgsql/data" "-p" "5433" "-B" "128"

The second line is the command that would be invoked in restart mode.

pg_resetwal
pg_resetwal — reset the write-ahead log and other control information of a IvorySQL database cluster

Synopsis

pg_resetwal [-f | --force] [-n | --dry-run] [option…] [-D | --pgdata] datadir

Options
• -f --force

Force pg_resetwal to proceed even if it cannot determine valid data for pg_control, as explained above.

• -n --dry-run

The -n / --dry-run option instructs pg_resetwal to print the values reconstructed from pg_control and
values about to be changed, and then exit without modifying anything. This is mainly a debugging tool, but
can be useful as a sanity check before allowing pg_resetwal to proceed for real.

• -V --version

Display version information, then exit.

• -? --help

Show help, then exit.

The following options are only needed when pg_resetwal is unable to determine appropriate values by
reading pg_control. Safe values can be determined as described below. For values that take numeric
arguments, hexadecimal values can be specified by using the prefix 0x.

• -c xid,xid --commit-timestamp-ids=xid,xid

Manually set the oldest and newest transaction IDs for which the commit time can be retrieved.A safe value
for the oldest transaction ID for which the commit time can be retrieved (first part) can be determined by

405

looking for the numerically smallest file name in the directory pg_commit_ts under the data directory.
Conversely, a safe value for the newest transaction ID for which the commit time can be retrieved (second
part) can be determined by looking for the numerically greatest file name in the same directory. The file
names are in hexadecimal.

• -e xid_epoch --epoch=xid_epoch

Manually set the next transaction ID’s epoch.The transaction ID epoch is not actually stored anywhere in
the database except in the field that is set by pg_resetwal, so any value will work so far as the database itself
is concerned. You might need to adjust this value to ensure that replication systems such as Slony-I and
Skytools work correctly — if so, an appropriate value should be obtainable from the state of the downstream
replicated database.

• -l walfile --next-wal-file=walfile

Manually set the WAL starting location by specifying the name of the next WAL segment file.The name of next
WAL segment file should be larger than any WAL segment file name currently existing in the directory pg_wal
under the data directory. These names are also in hexadecimal and have three parts. The first part is the
“timeline ID” and should usually be kept the same. For example, if 00000001000000320000004A is the
largest entry in pg_wal, use -l 00000001000000320000004B or higher.Note that when using nondefault WAL
segment sizes, the numbers in the WAL file names are different from the LSNs that are reported by system
functions and system views. This option takes a WAL file name, not an LSN.Note`pg_resetwal` itself looks at
the files in pg_wal and chooses a default -l setting beyond the last existing file name. Therefore, manual
adjustment of -l should only be needed if you are aware of WAL segment files that are not currently present
in pg_wal, such as entries in an offline archive; or if the contents of pg_wal have been lost entirely.

• -m mxid,mxid --multixact-ids=mxid,mxid

Manually set the next and oldest multitransaction ID.A safe value for the next multitransaction ID (first part)
can be determined by looking for the numerically largest file name in the directory pg_multixact/offsets
under the data directory, adding one, and then multiplying by 65536 (0x10000). Conversely, a safe value for
the oldest multitransaction ID (second part of -m) can be determined by looking for the numerically smallest
file name in the same directory and multiplying by 65536. The file names are in hexadecimal, so the easiest
way to do this is to specify the option value in hexadecimal and append four zeroes.

• -o oid --next-oid=oid

Manually set the next OID.There is no comparably easy way to determine a next OID that’s beyond the
largest one in the database, but fortunately it is not critical to get the next-OID setting right.

• -O mxoff --multixact-offset=mxoff

Manually set the next multitransaction offset.A safe value can be determined by looking for the numerically
largest file name in the directory pg_multixact/members under the data directory, adding one, and then
multiplying by 52352 (0xCC80). The file names are in hexadecimal. There is no simple recipe such as the ones
for other options of appending zeroes.

• --wal-segsize=wal_segment_size

Set the new WAL segment size, in megabytes. The value must be set to a power of 2 between 1 and 1024
(megabytes). See the same option of initdb for more information.NoteWhile pg_resetwal will set the WAL
starting address beyond the latest existing WAL segment file, some segment size changes can cause
previous WAL file names to be reused. It is recommended to use -l together with this option to manually set
the WAL starting address if WAL file name overlap will cause problems with your archiving strategy.

• -u xid --oldest-transaction-id=xid

Manually set the oldest unfrozen transaction ID.A safe value can be determined by looking for the
numerically smallest file name in the directory pg_xact under the data directory and then multiplying by
1048576 (0x100000). Note that the file names are in hexadecimal. It is usually easiest to specify the option
value in hexadecimal too. For example, if 0007 is the smallest entry in pg_xact, -u 0x700000 will work (five
trailing zeroes provide the proper multiplier).

406

https://www.IvorySQL.org/docs/current/app-initdb.html

• -x xid --next-transaction-id=xid

Manually set the next transaction ID.A safe value can be determined by looking for the numerically largest file
name in the directory pg_xact under the data directory, adding one, and then multiplying by 1048576
(0x100000). Note that the file names are in hexadecimal. It is usually easiest to specify the option value in
hexadecimal too. For example, if 0011 is the largest entry in pg_xact, -x 0x1200000 will work (five trailing
zeroes provide the proper multiplier).

Environment
• PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

Notes
This command must not be used when the server is running. pg_resetwal will refuse to start up if it finds a
server lock file in the data directory. If the server crashed then a lock file might have been left behind; in that
case you can remove the lock file to allow pg_resetwal to run. But before you do so, make doubly certain
that there is no server process still alive.

pg_resetwal works only with servers of the same major version.

pg_rewind
pg_rewind — synchronize a IvorySQL data directory with another data directory that was forked from it

Synopsis

pg_rewind [option…] { -D | --target-pgdata } directory { --source-pgdata=`directory` | --source-
server=`connstr` }

Warning
If pg_rewind fails while processing, then the data folder of the target is likely not in a state that can be
recovered. In such a case, taking a new fresh backup is recommended.

As pg_rewind copies configuration files entirely from the source, it may be required to correct the
configuration used for recovery before restarting the target server, especially if the target is reintroduced as a
standby of the source. If you restart the server after the rewind operation has finished but without
configuring recovery, the target may again diverge from the primary.

pg_rewind will fail immediately if it finds files it cannot write directly to. This can happen for example when
the source and the target server use the same file mapping for read-only SSL keys and certificates. If such
files are present on the target server it is recommended to remove them before running pg_rewind. After
doing the rewind, some of those files may have been copied from the source, in which case it may be
necessary to remove the data copied and restore back the set of links used before the rewind.

Options
pg_rewind accepts the following command-line arguments:

• -D directory --target-pgdata=directory

This option specifies the target data directory that is synchronized with the source. The target server must be
shut down cleanly before running pg_rewind

• --source-pgdata=directory

Specifies the file system path to the data directory of the source server to synchronize the target with. This

407

option requires the source server to be cleanly shut down.

• --source-server=connstr

Specifies a libpq connection string to connect to the source IvorySQL server to synchronize the target with.
The connection must be a normal (non-replication) connection with a role having sufficient permissions to
execute the functions used by pg_rewind on the source server (see Notes section for details) or a superuser
role. This option requires the source server to be running and accepting connections.

• -R --write-recovery-conf

Create standby.signal and append connection settings to IvorySQL.auto.conf in the output directory.
--source-server is mandatory with this option.

• -n --dry-run

Do everything except actually modifying the target directory.

• -N --no-sync

By default, pg_rewind will wait for all files to be written safely to disk. This option causes pg_rewind to return
without waiting, which is faster, but means that a subsequent operating system crash can leave the data
directory corrupt. Generally, this option is useful for testing but should not be used on a production
installation.

• -P --progress

Enables progress reporting. Turning this on will deliver an approximate progress report while copying data
from the source cluster.

• -c --restore-target-wal

Use restore_command defined in the target cluster configuration to retrieve WAL files from the WAL archive if
these files are no longer available in the pg_wal directory.

• --config-file=filename

Use the specified main server configuration file for the target cluster. This affects pg_rewind when it uses
internally the postgres command for the rewind operation on this cluster (when retrieving restore_command
with the option -c/--restore-target-wal and when forcing a completion of crash recovery).

• --debug

Print verbose debugging output that is mostly useful for developers debugging pg_rewind.

• --no-ensure-shutdown

pg_rewind requires that the target server is cleanly shut down before rewinding. By default, if the target
server is not shut down cleanly, pg_rewind starts the target server in single-user mode to complete crash
recovery first, and stops it. By passing this option, pg_rewind skips this and errors out immediately if the
server is not cleanly shut down. Users are expected to handle the situation themselves in that case.

• -V --version

Display version information, then exit.

• -? --help

Show help, then exit.

408

Environment
When --source-server option is used, pg_rewind also uses the environment variables supported by libpq .

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible values
are always, auto and never.

Notes
When executing pg_rewind using an online cluster as source, a role having sufficient permissions to execute
the functions used by pg_rewind on the source cluster can be used instead of a superuser. Here is how to
create such a role, named rewind_user here:

CREATE USER rewind_user LOGIN;
GRANT EXECUTE ON function pg_catalog.pg_ls_dir(text, boolean, boolean) TO rewind_user;
GRANT EXECUTE ON function pg_catalog.pg_stat_file(text, boolean) TO rewind_user;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text) TO rewind_user;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text, bigint, bigint,
boolean) TO rewind_user;

When executing pg_rewind using an online cluster as source which has been recently promoted, it is
necessary to execute a CHECKPOINT after promotion such that its control file reflects up-to-date timeline
information, which is used by pg_rewind to check if the target cluster can be rewound using the designated
source cluster.

How It Works
The basic idea is to copy all file system-level changes from the source cluster to the target cluster:

1.Scan the WAL log of the target cluster, starting from the last checkpoint before the point where the source
cluster’s timeline history forked off from the target cluster. For each WAL record, record each data block
that was touched. This yields a list of all the data blocks that were changed in the target cluster, after the
source cluster forked off. If some of the WAL files are no longer available, try re-running pg_rewind with the
-c option to search for the missing files in the WAL archive. 2.Copy all those changed blocks from the source
cluster to the target cluster, either using direct file system access (--source-pgdata) or SQL (--source
-server). Relation files are now in a state equivalent to the moment of the last completed checkpoint prior
to the point at which the WAL timelines of the source and target diverged plus the current state on the
source of any blocks changed on the target after that divergence. 3.Copy all other files, including new
relation files, WAL segments, pg_xact, and configuration files from the source cluster to the target cluster.
Similarly to base backups, the contents of the directories pg_dynshmem/, pg_notify/, pg_replslot/,
pg_serial/, pg_snapshots/, pg_stat_tmp/, and pg_subtrans/ are omitted from the data copied from the
source cluster. The files backup_label, tablespace_map, pg_internal.init, postmaster.opts, and
postmaster.pid, as well as any file or directory beginning with pgsql_tmp, are omitted. 4.Create a
backup_label file to begin WAL replay at the checkpoint created at failover and configure the pg_control file
with a minimum consistency LSN defined as the result of pg_current_wal_insert_lsn() when rewinding
from a live source or the last checkpoint LSN when rewinding from a stopped source. 5.When starting the
target, IvorySQL replays all the required WAL, resulting in a data directory in a consistent state.

pg_test_fsync
pg_test_fsync — determine fastest wal_sync_method for IvorySQL

Synopsis

pg_test_fsync [option…]

409

Options
pg_test_fsync accepts the following command-line options:

• -f --filename

Specifies the file name to write test data in. This file should be in the same file system that the pg_wal
directory is or will be placed in. (pg_wal contains the WAL files.) The default is pg_test_fsync.out in the
current directory.

• -s --secs-per-test

Specifies the number of seconds for each test. The more time per test, the greater the test’s accuracy, but
the longer it takes to run. The default is 5 seconds, which allows the program to complete in under 2
minutes.

• -V --version

Print the pg_test_fsync version and exit.

• -? --help

Show help about pg_test_fsync command line arguments, and exit.

Environment
The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible values
are always, auto and never.

pg_test_timing
pg_test_timing — measure timing overhead

Synopsis

pg_test_timing [option…]

Options
pg_test_timing accepts the following command-line options:

• -d `duration` --duration=`duration`

Specifies the test duration, in seconds. Longer durations give slightly better accuracy, and are more likely to
discover problems with the system clock moving backwards. The default test duration is 3 seconds.

• -V --version

Print the pg_test_timing version and exit.

• -? --help

Show help about pg_test_timing command line arguments, and exit.

Usage

Interpreting Results

Good results will show most (>90%) individual timing calls take less than one microsecond. Average per loop
overhead will be even lower, below 100 nanoseconds. This example from an Intel i7-860 system using a TSC

410

clock source shows excellent performance:

Testing timing overhead for 3 seconds.
Per loop time including overhead: 35.96 ns
Histogram of timing durations:
 < us % of total count
 1 96.40465 80435604
 2 3.59518 2999652
 4 0.00015 126
 8 0.00002 13
 16 0.00000 2

Note that different units are used for the per loop time than the histogram. The loop can have resolution
within a few nanoseconds (ns), while the individual timing calls can only resolve down to one microsecond
(us).

Measuring Executor Timing Overhead

When the query executor is running a statement using EXPLAIN ANALYZE, individual operations are timed as
well as showing a summary. The overhead of your system can be checked by counting rows with the psql
program:

CREATE TABLE t AS SELECT * FROM generate_series(1,100000);
\timing
SELECT COUNT(*) FROM t;
EXPLAIN ANALYZE SELECT COUNT(*) FROM t;

The i7-860 system measured runs the count query in 9.8 ms while the EXPLAIN ANALYZE version takes 16.6
ms, each processing just over 100,000 rows. That 6.8 ms difference means the timing overhead per row is 68
ns, about twice what pg_test_timing estimated it would be. Even that relatively small amount of overhead is
making the fully timed count statement take almost 70% longer. On more substantial queries, the timing
overhead would be less problematic.

Changing Time Sources

On some newer Linux systems, it’s possible to change the clock source used to collect timing data at any
time. A second example shows the slowdown possible from switching to the slower acpi_pm time source,
on the same system used for the fast results above:

cat /sys/devices/system/clocksource/clocksource0/available_clocksource
tsc hpet acpi_pm
echo acpi_pm > /sys/devices/system/clocksource/clocksource0/current_clocksource
pg_test_timing
Per loop time including overhead: 722.92 ns
Histogram of timing durations:
 < us % of total count
 1 27.84870 1155682
 2 72.05956 2990371

411

 4 0.07810 3241
 8 0.01357 563
 16 0.00007 3

In this configuration, the sample EXPLAIN ANALYZE above takes 115.9 ms. That’s 1061 ns of timing
overhead, again a small multiple of what’s measured directly by this utility. That much timing overhead
means the actual query itself is only taking a tiny fraction of the accounted for time, most of it is being
consumed in overhead instead. In this configuration, any EXPLAIN ANALYZE totals involving many timed
operations would be inflated significantly by timing overhead.

FreeBSD also allows changing the time source on the fly, and it logs information about the timer selected
during boot:

dmesg | grep "Timecounter"
Timecounter "ACPI-fast" frequency 3579545 Hz quality 900
Timecounter "i8254" frequency 1193182 Hz quality 0
Timecounters tick every 10.000 msec
Timecounter "TSC" frequency 2531787134 Hz quality 800
sysctl kern.timecounter.hardware=TSC
kern.timecounter.hardware: ACPI-fast -> TSC

Other systems may only allow setting the time source on boot. On older Linux systems the "clock" kernel
setting is the only way to make this sort of change. And even on some more recent ones, the only option
you’ll see for a clock source is "jiffies". Jiffies are the older Linux software clock implementation, which can
have good resolution when it’s backed by fast enough timing hardware, as in this example:

$ cat /sys/devices/system/clocksource/clocksource0/available_clocksource
jiffies
$ dmesg | grep time.c
time.c: Using 3.579545 MHz WALL PM GTOD PIT/TSC timer.
time.c: Detected 2400.153 MHz processor.
$ pg_test_timing
Testing timing overhead for 3 seconds.
Per timing duration including loop overhead: 97.75 ns
Histogram of timing durations:
 < us % of total count
 1 90.23734 27694571
 2 9.75277 2993204
 4 0.00981 3010
 8 0.00007 22
 16 0.00000 1
 32 0.00000 1

Clock Hardware and Timing Accuracy

Collecting accurate timing information is normally done on computers using hardware clocks with various
levels of accuracy. With some hardware the operating systems can pass the system clock time almost

412

directly to programs. A system clock can also be derived from a chip that simply provides timing interrupts,
periodic ticks at some known time interval. In either case, operating system kernels provide a clock source
that hides these details. But the accuracy of that clock source and how quickly it can return results varies
based on the underlying hardware.

Inaccurate time keeping can result in system instability. Test any change to the clock source very carefully.
Operating system defaults are sometimes made to favor reliability over best accuracy. And if you are using a
virtual machine, look into the recommended time sources compatible with it. Virtual hardware faces
additional difficulties when emulating timers, and there are often per operating system settings suggested
by vendors.

The Time Stamp Counter (TSC) clock source is the most accurate one available on current generation CPUs.
It’s the preferred way to track the system time when it’s supported by the operating system and the TSC
clock is reliable. There are several ways that TSC can fail to provide an accurate timing source, making it
unreliable. Older systems can have a TSC clock that varies based on the CPU temperature, making it
unusable for timing. Trying to use TSC on some older multicore CPUs can give a reported time that’s
inconsistent among multiple cores. This can result in the time going backwards, a problem this program
checks for. And even the newest systems can fail to provide accurate TSC timing with very aggressive power
saving configurations.

Newer operating systems may check for the known TSC problems and switch to a slower, more stable clock
source when they are seen. If your system supports TSC time but doesn’t default to that, it may be disabled
for a good reason. And some operating systems may not detect all the possible problems correctly, or will
allow using TSC even in situations where it’s known to be inaccurate.

The High Precision Event Timer (HPET) is the preferred timer on systems where it’s available and TSC is not
accurate. The timer chip itself is programmable to allow up to 100 nanosecond resolution, but you may not
see that much accuracy in your system clock.

Advanced Configuration and Power Interface (ACPI) provides a Power Management (PM) Timer, which Linux
refers to as the acpi_pm. The clock derived from acpi_pm will at best provide 300 nanosecond resolution.

Timers used on older PC hardware include the 8254 Programmable Interval Timer (PIT), the real-time clock
(RTC), the Advanced Programmable Interrupt Controller (APIC) timer, and the Cyclone timer. These timers
aim for millisecond resolution.

pg_upgrade
pg_upgrade — upgrade a IvorySQL server instance

Synopsis

pg_upgrade -b oldbindir [-B newbindir] -d oldconfigdir -D newconfigdir [option…]

Options
pg_upgrade accepts the following command-line arguments:

• -b bindir --old-bindir=bindir

the old IvorySQL executable directory; environment variable PGBINOLD

• -B bindir --new-bindir=bindir

the new IvorySQL executable directory; default is the directory where pg_upgrade resides; environment
variable PGBINNEW

• -c --check

check clusters only, don’t change any data

413

• -d configdir --old-datadir=configdir

the old database cluster configuration directory; environment variable PGDATAOLD

• -D configdir --new-datadir=configdir

the new database cluster configuration directory; environment variable PGDATANEW

• -j `njobs` --jobs=`njobs`

number of simultaneous processes or threads to use

• -k --link

use hard links instead of copying files to the new cluster

• -N --no-sync

By default, pg_upgrade will wait for all files of the upgraded cluster to be written safely to disk. This option
causes pg_upgrade to return without waiting, which is faster, but means that a subsequent operating system
crash can leave the data directory corrupt. Generally, this option is useful for testing but should not be used
on a production installation.

• -o options --old-options options

options to be passed directly to the old postgres command; multiple option invocations are appended

• -O options --new-options options

options to be passed directly to the new postgres command; multiple option invocations are appended

• -p port --old-port=port

the old cluster port number; environment variable PGPORTOLD

• -P port --new-port=port

the new cluster port number; environment variable PGPORTNEW

• -r --retain

retain SQL and log files even after successful completion

• -s dir --socketdir=dir

directory to use for postmaster sockets during upgrade; default is current working directory; environment
variable PGSOCKETDIR

• -U username --username=username

cluster’s install user name; environment variable PGUSER

• -v --verbose

enable verbose internal logging

• -V --version

display version information, then exit

• --clone

Use efficient file cloning (also known as “reflinks” on some systems) instead of copying files to the new

414

cluster. This can result in near-instantaneous copying of the data files, giving the speed advantages of -k/
--link while leaving the old cluster untouched.File cloning is only supported on some operating systems
and file systems. If it is selected but not supported, the pg_upgrade run will error. At present, it is supported
on Linux (kernel 4.5 or later) with Btrfs and XFS (on file systems created with reflink support), and on macOS
with APFS.

• -? --help

show help, then exit

Usage
These are the steps to perform an upgrade with pg_upgrade:

1.Optionally move the old cluster

If your installation directory is not version-specific, e.g., /usr/local/pgsql, it is necessary to move the
current IvorySQL install directory so it does not interfere with the new IvorySQL installation. Once the
current IvorySQL server is shut down, it is safe to rename the IvorySQL installation directory; assuming
the old directory is /usr/local/pgsql, you can do:

mv /usr/local/pgsql /usr/local/pgsql.old

to rename the directory.

2.For source installs, build the new version

Build the new IvorySQL source with configure flags that are compatible with the old cluster.
pg_upgrade will check pg_controldata to make sure all settings are compatible before starting the
upgrade.

3.Install the new IvorySQL binaries

Install the new server’s binaries and support files. pg_upgrade is included in a default installation.

For source installs, if you wish to install the new server in a custom location, use the prefix variable:

make prefix=/usr/local/pgsql.new install

4.Initialize the new IvorySQL cluster

Initialize the new cluster using initdb. Again, use compatible initdb flags that match the old cluster.
Many prebuilt installers do this step automatically. There is no need to start the new cluster.

5.Install extension shared object files

Many extensions and custom modules, whether from contrib or another source, use shared object
files (or DLLs), e.g., pgcrypto.so. If the old cluster used these, shared object files matching the new
server binary must be installed in the new cluster, usually via operating system commands. Do not

415

load the schema definitions, e.g., CREATE EXTENSION pgcrypto, because these will be duplicated from
the old cluster. If extension updates are available, pg_upgrade will report this and create a script that
can be run later to update them.

6.Copy custom full-text search files

Copy any custom full text search files (dictionary, synonym, thesaurus, stop words) from the old to the
new cluster.

7.Adjust authentication

pg_upgrade will connect to the old and new servers several times, so you might want to set
authentication to peer in pg_hba.conf or use a ~/.pgpass file .

8.Stop both servers

Make sure both database servers are stopped using, on Unix, e.g.:

pg_ctl -D /opt/IvorySQL/1.5 stop
pg_ctl -D /opt/IvorySQL/2.1 stop

or on Windows, using the proper service names:

NET STOP IvorySQL-1.5
NET STOP IvorySQL-2.1

Streaming replication and log-shipping standby servers can remain running until a later step.

9.Prepare for standby server upgrades

Verify that the old standby servers are caught up by running pg_controldata against the old primary
and standby clusters. Verify that the “Latest checkpoint location” values match in all clusters.
(There will be a mismatch if old standby servers were shut down before the old primary or if the old
standby servers are still running.) Also, make sure wal_level is not set to minimal in the IvorySQL.conf
file on the new primary cluster.

10.Run pg_upgrade

Always run the pg_upgrade binary of the new server, not the old one. pg_upgrade requires the
specification of the old and new cluster’s data and executable (bin) directories. You can also specify
user and port values, and whether you want the data files linked or cloned instead of the default copy
behavior.

If you use link mode, the upgrade will be much faster (no file copying) and use less disk space, but you
will not be able to access your old cluster once you start the new cluster after the upgrade. Link mode
also requires that the old and new cluster data directories be in the same file system. (Tablespaces
and pg_wal can be on different file systems.) Clone mode provides the same speed and disk space
advantages but does not cause the old cluster to be unusable once the new cluster is started. Clone

416

mode also requires that the old and new data directories be in the same file system. This mode is only
available on certain operating systems and file systems.

The --jobs option allows multiple CPU cores to be used for copying/linking of files and to dump and
restore database schemas in parallel; a good place to start is the maximum of the number of CPU
cores and tablespaces. This option can dramatically reduce the time to upgrade a multi-database
server running on a multiprocessor machine.

For Windows users, you must be logged into an administrative account, and then start a shell as the
postgres user and set the proper path:

RUNAS /USER:postgres "CMD.EXE"
SET PATH=%PATH%;C:\Program Files\IvorySQL\15\bin;

and then run pg_upgrade with quoted directories, e.g.:

pg_upgrade.exe
 --old-datadir "C:/Program Files/IvorySQL/1.5/data"
 --new-datadir "C:/Program Files/IvorySQL/2.1/data"
 --old-bindir "C:/Program Files/IvorySQL/1.5/bin"
 --new-bindir "C:/Program Files/IvorySQL/2.1/bin"

Once started, pg_upgrade will verify the two clusters are compatible and then do the upgrade. You can
use pg_upgrade --check to perform only the checks, even if the old server is still running. pg_upgrade
--check will also outline any manual adjustments you will need to make after the upgrade. If you are
going to be using link or clone mode, you should use the option --link or --clone with --check to
enable mode-specific checks. pg_upgrade requires write permission in the current directory.

Obviously, no one should be accessing the clusters during the upgrade. pg_upgrade defaults to
running servers on port 50432 to avoid unintended client connections. You can use the same port
number for both clusters when doing an upgrade because the old and new clusters will not be
running at the same time. However, when checking an old running server, the old and new port
numbers must be different.

If an error occurs while restoring the database schema, pg_upgrade will exit and you will have to revert
to the old cluster .To try pg_upgrade again, you will need to modify the old cluster so the pg_upgrade
schema restore succeeds. If the problem is a contrib module, you might need to uninstall the contrib
module from the old cluster and install it in the new cluster after the upgrade, assuming the module is
not being used to store user data.

11.Upgrade streaming replication and log-shipping standby servers

If you used link mode and have Streaming Replication or Log-Shipping standby servers, you can
follow these steps to quickly upgrade them. You will not be running pg_upgrade on the standby
servers, but rather rsync on the primary. Do not start any servers yet.

If you did not use link mode, do not have or do not want to use rsync, or want an easier solution, skip
the instructions in this section and simply recreate the standby servers once pg_upgrade completes
and the new primary is running.

1. Install the new IvorySQL binaries on standby servers

Make sure the new binaries and support files are installed on all standby

417

servers.

2. Make sure the new standby data directories do *not* exist

Make sure the new standby data directories do *not* exist or are empty. If
initdb was run, delete the standby servers' new data directories.

3. Install extension shared object files

Install the same extension shared object files on the new standbys that you
installed in the new primary cluster.

4. Stop standby servers

If the standby servers are still running, stop them now using the above
instructions.

5. Save configuration files

Save any configuration files from the old standbys' configuration directories
you need to keep, e.g., `IvorySQL.conf` (and any files included by it),
`IvorySQL.auto.conf`, `pg_hba.conf`, because these will be overwritten or
removed in the next step.

6. Run rsync

When using link mode, standby servers can be quickly upgraded using rsync. To
accomplish this, from a directory on the primary server that is above the old
and new database cluster directories, run this on the *primary* for each
standby server:

```
rsync --archive --delete --hard-links --size-only --no-inc-recursive
old_cluster new_cluster remote_dir
```

where `old_cluster` and `new_cluster` are relative to the current directory
on the primary, and `remote_dir` is *above* the old and new cluster
directories on the standby. The directory structure under the specified
directories on the primary and standbys must match. Consult the rsync manual
page for details on specifying the remote directory, e.g.,

```
rsync --archive --delete --hard-links --size-only --no-inc-recursive

418



/opt/IvorySQL/1.5 \
      /opt/IvorySQL/2.1 standby.example.com:/opt/IvorySQL
```

You can verify what the command will do using rsync's `--dry-run` option.
While rsync must be run on the primary for at least one standby, it is
possible to run rsync on an upgraded standby to upgrade other standbys, as
long as the upgraded standby has not been started.

What this does is to record the links created by pg_upgrade's link mode that
connect files in the old and new clusters on the primary server. It then
finds matching files in the standby's old cluster and creates links for them
in the standby's new cluster. Files that were not linked on the primary are
copied from the primary to the standby. (They are usually small.) This
provides rapid standby upgrades. Unfortunately, rsync needlessly copies files
associated with temporary and unlogged tables because these files don't
normally exist on standby servers.

If you have relocated `pg_wal` outside the data directories, rsync must be
run on those directories too.

7. Configure streaming replication and log-shipping standby servers

Configure the servers for log shipping. (You do not need to run
`pg_backup_start()` and `pg_backup_stop()` or take a file system backup as
the standbys are still synchronized with the primary.) Replication slots are
not copied and must be recreated.

12.Restore pg_hba.conf

If you modified pg_hba.conf, restore its original settings. It might also be necessary to adjust other
configuration files in the new cluster to match the old cluster, e.g., IvorySQL.conf (and any files
included by it), IvorySQL.auto.conf.

13.Start the new server

The new server can now be safely started, and then any rsync’ed standby servers.

14.Post-upgrade processing

If any post-upgrade processing is required, pg_upgrade will issue warnings as it completes. It will also
generate script files that must be run by the administrator. The script files will connect to each
database that needs post-upgrade processing. Each script should be run using:

419

psql --username=postgres --file=script.sql postgres

The scripts can be run in any order and can be deleted once they have been run.

Caution
In general it is unsafe to access tables referenced in rebuild scripts until the rebuild scripts have run to
completion; doing so could yield incorrect results or poor performance. Tables not referenced in
rebuild scripts can be accessed immediately.

15.Statistics

Because optimizer statistics are not transferred by pg_upgrade, you will be instructed to run a command to
regenerate that information at the end of the upgrade. You might need to set connection parameters to
match your new cluster.

16.Delete old cluster

Once you are satisfied with the upgrade, you can delete the old cluster’s data directories by running the
script mentioned when pg_upgrade completes. (Automatic deletion is not possible if you have user-defined
tablespaces inside the old data directory.) You can also delete the old installation directories (e.g., bin,
share).

17.Reverting to old cluster

If, after running pg_upgrade, you wish to revert to the old cluster, there are several options:

• If the --check option was used, the old cluster was unmodified; it can be restarted.
• If the --link option was not used, the old cluster was unmodified; it can be restarted.
• If the --link option was used, the data files might be shared between the old and new cluster:

◦ If pg_upgrade aborted before linking started, the old cluster was unmodified; it can be restarted.
◦ If you did not start the new cluster, the old cluster was unmodified except that, when linking started,

a .old suffix was appended to $PGDATA/global/pg_control. To reuse the old cluster, remove the
.old suffix from $PGDATA/global/pg_control; you can then restart the old cluster.

◦ If you did start the new cluster, it has written to shared files and it is unsafe to use the old cluster. The
old cluster will need to be restored from backup in this case.

Notes
pg_upgrade creates various working files, such as schema dumps, stored within pg_upgrade_output.d in the
directory of the new cluster. Each run creates a new subdirectory named with a timestamp formatted as per
ISO 8601 (%Y%m%dT%H%M%S), where all its generated files are stored. pg_upgrade_output.d and its contained
files will be removed automatically if pg_upgrade completes successfully; but in the event of trouble, the
files there may provide useful debugging information.

pg_upgrade launches short-lived postmasters in the old and new data directories. Temporary Unix socket
files for communication with these postmasters are, by default, made in the current working directory. In
some situations the path name for the current directory might be too long to be a valid socket name. In that
case you can use the -s option to put the socket files in some directory with a shorter path name. For
security, be sure that that directory is not readable or writable by any other users. (This is not supported on
Windows.)

All failure, rebuild, and reindex cases will be reported by pg_upgrade if they affect your installation; post-
upgrade scripts to rebuild tables and indexes will be generated automatically. If you are trying to automate
the upgrade of many clusters, you should find that clusters with identical database schemas require the

420

same post-upgrade steps for all cluster upgrades; this is because the post-upgrade steps are based on the
database schemas, and not user data.

For deployment testing, create a schema-only copy of the old cluster, insert dummy data, and upgrade that.

pg_upgrade does not support upgrading of databases containing table columns using these reg* OID-
referencing system data types:

regcollation
regconfig
regdictionary
regnamespace
regoper
regoperator
regproc
regprocedure

(regclass, regrole, and regtype can be upgraded.)

If you want to use link mode and you do not want your old cluster to be modified when the new cluster is
started, consider using the clone mode. If that is not available, make a copy of the old cluster and upgrade
that in link mode. To make a valid copy of the old cluster, use rsync to create a dirty copy of the old cluster
while the server is running, then shut down the old server and run rsync --checksum again to update the
copy with any changes to make it consistent. (--checksum is necessary because rsync only has file
modification-time granularity of one second.) . If your file system supports file system snapshots or copy-on-
write file copies, you can use that to make a backup of the old cluster and tablespaces, though the snapshot
and copies must be created simultaneously or while the database server is down.

pg_waldump
pg_waldump — display a human-readable rendering of the write-ahead log of a IvorySQL database cluster

Synopsis

pg_waldump [option…] [startseg [endseg]]

Options
The following command-line options control the location and format of the output:

• startseg

Start reading at the specified log segment file. This implicitly determines the path in which files will be
searched for, and the timeline to use.

• endseg

Stop after reading the specified log segment file.

• -b --bkp-details

Output detailed information about backup blocks.

• -B block --block=block

Only display records that modify the given block. The relation must also be provided with --relation or -R.

421

• -e end --end=end

Stop reading at the specified WAL location, instead of reading to the end of the log stream.

• -f --follow

After reaching the end of valid WAL, keep polling once per second for new WAL to appear.

• -F fork --fork=fork

If provided, only display records that modify blocks in the given fork. The valid values are main for the main
fork, fsm for the free space map, vm for the visibility map, and init for the init fork.

• -n limit --limit=limit

Display the specified number of records, then stop.

• -p path --path=path

Specifies a directory to search for log segment files or a directory with a pg_wal subdirectory that contains
such files. The default is to search in the current directory, the pg_wal subdirectory of the current directory,
and the pg_wal subdirectory of PGDATA.

• -q --quiet

Do not print any output, except for errors. This option can be useful when you want to know whether a range
of WAL records can be successfully parsed but don’t care about the record contents.

• -r rmgr --rmgr=rmgr

Only display records generated by the specified resource manager. You can specify the option multiple times
to select multiple resource managers. If list is passed as name, print a list of valid resource manager names,
and exit.Extensions may define custom resource managers, but pg_waldump does not load the extension
module and therefore does not recognize custom resource managers by name. Instead, you can specify the
custom resource managers as custom where “ ” is the three-digit resource manager ID. Names of this form
will always be considered valid.

• -R tblspc / db / rel --relation=tblspc / db / rel

Only display records that modify blocks in the given relation. The relation is specified with tablespace OID,
database OID, and relfilenode separated by slashes, for example 1234/12345/12345. This is the same format
used for relations in the program’s output.

• -s start --start=start

WAL location at which to start reading. The default is to start reading the first valid log record found in the
earliest file found.

• -t timeline --timeline=timeline

Timeline from which to read log records. The default is to use the value in startseg, if that is specified;
otherwise, the default is 1.

• -V --version

Print the pg_waldump version and exit.

• -w --fullpage

Only display records that include full page images.

• -x xid --xid=xid

422

Only display records marked with the given transaction ID.

• -z --stats[=record]

Display summary statistics (number and size of records and full-page images) instead of individual records.
Optionally generate statistics per-record instead of per-rmgr.If pg_waldump is terminated by signal SIGINT
(Control + C), the summary of the statistics computed is displayed up to the termination point. This
operation is not supported on Windows.

• -? --help

Show help about pg_waldump command line arguments, and exit.

Environment
• PGDATA

Data directory; see also the -p option.

• PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

Notes
Can give wrong results when the server is running.

Only the specified timeline is displayed (or the default, if none is specified). Records in other timelines are
ignored.

pg_waldump cannot read WAL files with suffix .partial. If those files need to be read, .partial suffix needs
to be removed from the file name.

postgres
postgres — IvorySQL database server

Synopsis

postgres [option…]

Options
postgres accepts the following command-line arguments. You can save typing most of these options by
setting up a configuration file. Some (safe) options can also be set from the connecting client in an
application-dependent way to apply only for that session. For example, if the environment variable
PGOPTIONS is set, then libpq-based clients will pass that string to the server, which will interpret it as postgres
command-line options.

General Purpose
• -B nbuffers

Sets the number of shared buffers for use by the server processes. The default value of this parameter is
chosen automatically by initdb. Specifying this option is equivalent to setting the shared_buffers
configuration parameter.

• -c name=value

Sets a named run-time parameter. Most of the other command line options are in fact short forms of such a

423

https://www.IvorySQL.org/docs/current/runtime-config-resource.html#GUC-SHARED-BUFFERS

parameter assignment. -c can appear multiple times to set multiple parameters.

• -C name

Prints the value of the named run-time parameter, and exits. (See the -c option above for details.) This
returns values from IvorySQL.conf, modified by any parameters supplied in this invocation. It does not
reflect parameters supplied when the cluster was started.This can be used on a running server for most
parameters. However, the server must be shut down for some runtime-computed parameters (e.g.,
shared_memory_size, shared_memory_size_in_huge_pages, and wal_segment_size).This option is meant
for other programs that interact with a server instance, such as pg_ctl, to query configuration parameter
values. User-facing applications should instead use SHOW or the pg_settings view.

• -d debug-level

Sets the debug level. The higher this value is set, the more debugging output is written to the server log.
Values are from 1 to 5. It is also possible to pass -d 0 for a specific session, which will prevent the server log
level of the parent postgres process from being propagated to this session.

• -D datadir

Specifies the file system location of the database configuration files.

• -e

Sets the default date style to “European”, that is DMY ordering of input date fields. This also causes the day
to be printed before the month in certain date output formats.

• -F

Disables fsync calls for improved performance, at the risk of data corruption in the event of a system crash.
Specifying this option is equivalent to disabling the fsync configuration parameter. Read the detailed
documentation before using this!

• -h hostname

Specifies the IP host name or address on which postgres is to listen for TCP/IP connections from client
applications. The value can also be a comma-separated list of addresses, or * to specify listening on all
available interfaces. An empty value specifies not listening on any IP addresses, in which case only Unix-
domain sockets can be used to connect to the server. Defaults to listening only on localhost. Specifying this
option is equivalent to setting the listen_addresses configuration parameter.

• -i

Allows remote clients to connect via TCP/IP (Internet domain) connections. Without this option, only local
connections are accepted. This option is equivalent to setting listen_addresses to * in IvorySQL.conf or via
-h.This option is deprecated since it does not allow access to the full functionality of listen_addresses. It’s
usually better to set listen_addresses directly.

• -k directory

Specifies the directory of the Unix-domain socket on which postgres is to listen for connections from client
applications. The value can also be a comma-separated list of directories. An empty value specifies not
listening on any Unix-domain sockets, in which case only TCP/IP sockets can be used to connect to the
server. The default value is normally /tmp, but that can be changed at build time. Specifying this option is
equivalent to setting the unix_socket_directories configuration parameter.

• -l

Enables secure connections using SSL. IvorySQL must have been compiled with support for SSL for this
option to be available.

• -N max-connections

424

https://www.IvorySQL.org/docs/current/runtime-config-preset.html#GUC-SHARED-MEMORY-SIZE
https://www.IvorySQL.org/docs/current/runtime-config-preset.html#GUC-SHARED-MEMORY-SIZE-IN-HUGE-PAGES
https://www.IvorySQL.org/docs/current/runtime-config-preset.html#GUC-WAL-SEGMENT-SIZE
https://www.IvorySQL.org/docs/current/app-pg-ctl.html
https://www.IvorySQL.org/docs/current/sql-show.html
https://www.IvorySQL.org/docs/current/runtime-config-wal.html#GUC-FSYNC
https://www.IvorySQL.org/docs/current/runtime-config-connection.html#GUC-LISTEN-ADDRESSES
https://www.IvorySQL.org/docs/current/runtime-config-connection.html#GUC-LISTEN-ADDRESSES
https://www.IvorySQL.org/docs/current/runtime-config-connection.html#GUC-UNIX-SOCKET-DIRECTORIES

Sets the maximum number of client connections that this server will accept. The default value of this
parameter is chosen automatically by initdb. Specifying this option is equivalent to setting the
max_connections configuration parameter.

• -p port

Specifies the TCP/IP port or local Unix domain socket file extension on which postgres is to listen for
connections from client applications. Defaults to the value of the PGPORT environment variable, or if PGPORT is
not set, then defaults to the value established during compilation (normally 5432). If you specify a port other
than the default port, then all client applications must specify the same port using either command-line
options or PGPORT.

• -s

Print time information and other statistics at the end of each command. This is useful for benchmarking or
for use in tuning the number of buffers.

• -S work-mem

Specifies the base amount of memory to be used by sorts and hash tables before resorting to temporary disk
files.

• -V --version

Print the postgres version and exit.

• --name=value

Sets a named run-time parameter; a shorter form of -c.

• --describe-config

This option dumps out the server’s internal configuration variables, descriptions, and defaults in tab-
delimited COPY format. It is designed primarily for use by administration tools.

• -? --help

Show help about postgres command line arguments, and exit.

Semi-Internal Options
The options described here are used mainly for debugging purposes, and in some cases to assist with
recovery of severely damaged databases. There should be no reason to use them in a production database
setup. They are listed here only for use by IvorySQL system developers. Furthermore, these options might
change or be removed in a future release without notice.

• -f { s | i | o | b | t | n | m | h }

Forbids the use of particular scan and join methods: s and i disable sequential and index scans respectively,
o, b and t disable index-only scans, bitmap index scans, and TID scans respectively, while n, m, and h disable
nested-loop, merge and hash joins respectively.Neither sequential scans nor nested-loop joins can be
disabled completely; the -fs and -fn options simply discourage the optimizer from using those plan types if
it has any other alternative.

• -n

This option is for debugging problems that cause a server process to die abnormally. The ordinary strategy
in this situation is to notify all other server processes that they must terminate and then reinitialize the
shared memory and semaphores. This is because an errant server process could have corrupted some
shared state before terminating. This option specifies that postgres will not reinitialize shared data
structures. A knowledgeable system programmer can then use a debugger to examine shared memory and
semaphore state.

425

https://www.IvorySQL.org/docs/current/runtime-config-connection.html#GUC-MAX-CONNECTIONS

• -O

Allows the structure of system tables to be modified. This is used by initdb.

• -P

Ignore system indexes when reading system tables, but still update the indexes when modifying the tables.
This is useful when recovering from damaged system indexes.

• -t pa[rser] | pl[anner] | e[xecutor]

Print timing statistics for each query relating to each of the major system modules. This option cannot be
used together with the -s option.

• -T

This option is for debugging problems that cause a server process to die abnormally. The ordinary strategy
in this situation is to notify all other server processes that they must terminate and then reinitialize the
shared memory and semaphores. This is because an errant server process could have corrupted some
shared state before terminating. This option specifies that postgres will stop all other server processes by
sending the signal SIGSTOP, but will not cause them to terminate. This permits system programmers to
collect core dumps from all server processes by hand.

• -v protocol

Specifies the version number of the frontend/backend protocol to be used for a particular session. This
option is for internal use only.

• -W seconds

A delay of this many seconds occurs when a new server process is started, after it conducts the
authentication procedure. This is intended to give an opportunity to attach to the server process with a
debugger.

Options for Single-User Mode
The following options only apply to the single-user mode (see Single-User Mode below).

• --single

Selects the single-user mode. This must be the first argument on the command line.

• database

Specifies the name of the database to be accessed. This must be the last argument on the command line. If
it is omitted it defaults to the user name.

• -E

Echo all commands to standard output before executing them.

• -j

Use semicolon followed by two newlines, rather than just newline, as the command entry terminator.

• -r filename

Send all server log output to filename. This option is only honored when supplied as a command-line
option.

426

https://www.IvorySQL.org/docs/current/app-postgres.html#APP-POSTGRES-SINGLE-USER

Environment
• PGCLIENTENCODING

Default character encoding used by clients. (The clients can override this individually.) This value can also be
set in the configuration file.

• PGDATA

Default data directory location

• PGDATESTYLE

Default value of the DateStyle run-time parameter. (The use of this environment variable is deprecated.)

• PGPORT

Default port number (preferably set in the configuration file)

Diagnostics
A failure message mentioning semget or shmget probably indicates you need to configure your kernel to
provide adequate shared memory and semaphores. You might be able to postpone reconfiguring your
kernel by decreasing shared_buffers to reduce the shared memory consumption of IvorySQL, and/or by
reducing max_connections to reduce the semaphore consumption.

A failure message suggesting that another server is already running should be checked carefully, for example
by using the command

$ ps ax | grep postgres

or

$ ps -ef | grep postgres

depending on your system. If you are certain that no conflicting server is running, you can remove the lock
file mentioned in the message and try again.

A failure message indicating inability to bind to a port might indicate that that port is already in use by some
non-IvorySQL process. You might also get this error if you terminate postgres and immediately restart it
using the same port; in this case, you must simply wait a few seconds until the operating system closes the
port before trying again. Finally, you might get this error if you specify a port number that your operating
system considers to be reserved. For example, many versions of Unix consider port numbers under 1024 to
be “trusted” and only permit the Unix superuser to access them.

Notes
The utility command pg_ctl can be used to start and shut down the postgres server safely and comfortably.

If at all possible, do not use SIGKILL to kill the main postgres server. Doing so will prevent postgres from
freeing the system resources (e.g., shared memory and semaphores) that it holds before terminating. This
might cause problems for starting a fresh postgres run.

To terminate the postgres server normally, the signals SIGTERM, SIGINT, or SIGQUIT can be used. The first will
wait for all clients to terminate before quitting, the second will forcefully disconnect all clients, and the third
will quit immediately without proper shutdown, resulting in a recovery run during restart.

The SIGHUP signal will reload the server configuration files. It is also possible to send SIGHUP to an individual

427

https://www.IvorySQL.org/docs/current/runtime-config-client.html#GUC-DATESTYLE
https://www.IvorySQL.org/docs/current/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.IvorySQL.org/docs/current/runtime-config-connection.html#GUC-MAX-CONNECTIONS
https://www.IvorySQL.org/docs/current/app-pg-ctl.html

server process, but that is usually not sensible.

To cancel a running query, send the SIGINT signal to the process running that command. To terminate a
backend process cleanly, send SIGTERM to that process. See also pg_cancel_backend.

The postgres server uses SIGQUIT to tell subordinate server processes to terminate without normal cleanup.
This signal should not be used by users. It is also unwise to send SIGKILL to a server process — the main
postgres process will interpret this as a crash and will force all the sibling processes to quit as part of its
standard crash-recovery procedure.

Bugs
The -- options will not work on FreeBSD or OpenBSD. Use -c instead. This is a bug in the affected operating
systems; a future release of IvorySQL will provide a workaround if this is not fixed.

Single-User Mode
To start a single-user mode server, use a command like

postgres --single -D /usr/local/pgsql/data other-options my_database

Provide the correct path to the database directory with -D, or make sure that the environment variable
PGDATA is set. Also specify the name of the particular database you want to work in.

Normally, the single-user mode server treats newline as the command entry terminator; there is no
intelligence about semicolons, as there is in psql. To continue a command across multiple lines, you must
type backslash just before each newline except the last one. The backslash and adjacent newline are both
dropped from the input command. Note that this will happen even when within a string literal or comment.

But if you use the -j command line switch, a single newline does not terminate command entry; instead, the
sequence semicolon-newline-newline does. That is, type a semicolon immediately followed by a completely
empty line. Backslash-newline is not treated specially in this mode. Again, there is no intelligence about such
a sequence appearing within a string literal or comment.

In either input mode, if you type a semicolon that is not just before or part of a command entry terminator, it
is considered a command separator. When you do type a command entry terminator, the multiple
statements you’ve entered will be executed as a single transaction.

To quit the session, type EOF (Control+D, usually). If you’ve entered any text since the last command entry
terminator, then EOF will be taken as a command entry terminator, and another EOF will be needed to exit.

Note that the single-user mode server does not provide sophisticated line-editing features (no command
history, for example). Single-user mode also does not do any background processing, such as automatic
checkpoints or replication.

Examples
To start postgres in the background using default values, type:

$ nohup postgres >logfile 2>&1 </dev/null &

To start postgres with a specific port, e.g., 1234:

$ postgres -p 1234

To connect to this server using psql, specify this port with the -p option:

428

$ psql -p 1234

or set the environment variable PGPORT:

$ export PGPORT=1234
$ psql

Named run-time parameters can be set in either of these styles:

$ postgres -c work_mem=1234
$ postgres --work-mem=1234

Either form overrides whatever setting might exist for work_mem in IvorySQL.conf. Notice that underscores in
parameter names can be written as either underscore or dash on the command line. Except for short-term
experiments, it’s probably better practice to edit the setting in IvorySQL.conf than to rely on a command-
line switch to set a parameter.

429

FAQ
Contributing
IvorySQL is maintained by a core team of developers with commit rights to the main IvorySQL repository on
GitHub. At the same time, we are very eager to receive contributions from anybody in the wider IvorySQL
community. This section covers all you need to know if you want to see your code or documentation
changes be added to IvorySQL and appear in future releases.

Getting started
IvorySQL is developed on GitHub, and anybody wishing to contribute to it will have to have a GitHub
account and be familiar with Git tools and workflow. It is also recommended that you follow the
developer’s mailing list since some of the contributions may generate more detailed discussions there.

Once you have your GitHub account, fork this repository so that you can have your private copy to start
hacking on and to use as a source of pull requests.

Licensing of IvorySQL contributions
If the contribution you’re submitting is original work, you can assume that IvorySQL will release it as part of
an overall IvorySQL release available to the downstream consumers under the Apache License, Version 2.0.

If the contribution you’re submitting is NOT original work you have to indicate the name of the license and
also make sure that it is similar in terms to the Apache License 2.0. Apache Software Foundation maintains a
list of these licenses under Category A. In addition to that, you may be required to make proper attributions.

Finally, keep in mind that it is NEVER a good idea to remove licensing headers from the work that is not your
original one. Even if you are using parts of the file that originally had a licensing header at the top you should
err on the side of preserving it. As always, if you are not quite sure about the licensing implications of your
contributions, feel free to reach out to us on the developer mailing list.

Coding guidelines
Your chances of getting feedback and seeing your code merged into the project greatly depend on how
granular your changes are. If you happen to have a bigger change in mind, we highly recommend engaging
on the developer’s mailing list first and sharing your proposal with us before you spend a lot of time writing
code. Even when your proposal gets validated by the community, we still recommend doing the actual work
as a series of small, self-contained commits. This makes the reviewer’s job much easier and increases the
timeliness of feedback.

When it comes to C and C++ parts of IvorySQL, we try to follow PostgreSQL Coding Conventions. In addition
to that:

For C and Perl code, please run pgindent if necessary. We recommend using git diff --color when reviewing
your changes so that you don’t have any spurious whitespace issues in the code that you submit.

All new functionality that is contributed to IvorySQL should be covered by regression tests that are
contributed alongside it. If you are uncertain about how to test or document your work, please raise the
question on the ivorysql-hackers mailing list and the developer community will do its best to help you.

At the very minimum, you should always be running make installcheck-world to make sure that you’re not
breaking anything.

430

Changes applicable to upstream PostgreSQL
If the change you’re working on touches functionality that is common between PostgreSQL and IvorySQL,
you may be asked to forward-port it to PostgreSQL. This is not only so that we keep reducing the delta
between the two projects, but also so that any change that is relevant to PostgreSQL can benefit from a
much broader review of the upstream PostgreSQL community. In general, it is a good idea to keep both
codebases handy so you can be sure whether your changes may need to be forward-ported.

Patch submission
Once you are ready to share your work with the IvorySQL core team and the rest of the IvorySQL community,
you should push all the commits to a branch in your own repository forked from the official IvorySQL and
send us a pull request.

Patch review
A submitted pull request with passing validation checks is assumed to be available for peer review. Peer
review is the process that ensures that contributions to IvorySQL are of high quality and align well with the
road map and community expectations. Every member of the IvorySQL community is encouraged to review
pull requests and provide feedback. Since you don’t have to be a core team member to be able to do that,
we recommend following a stream of pull reviews to anybody who’s interested in becoming a long-term
contributor to IvorySQL.

One outcome of the peer review could be a consensus that you need to modify your pull request in certain
ways. GitHub allows you to push additional commits into a branch from which a pull request was sent.
Those additional commits will be then visible to all of the reviewers.

A peer review converges when it receives at least one +1 and no -1s votes from the participants. At that point,
you should expect one of the core team members to pull your changes into the project.

At any time during the patch review, you may experience delays based on the availability of reviewers and
core team members. Please be patient. That being said, don’t get discouraged either. If you’re not getting
expected feedback for a few days add a comment asking for updates on the pull request itself or send an
email to the mailing list.

Direct commits to the repository
On occasion, you will see core team members committing directly to the repository without going through
the pull request workflow. This is reserved for small changes only and the rule of thumb we use is this: if the
change touches any functionality that may result in a test failure, then it has to go through a pull request
workflow. If, on the other hand, the change is in the non-functional part of the codebase (such as fixing a
typo inside of a comment block) core team members can decide to just commit to the repository directly.

431

	IvorySQL
	Table of Contents
	Welcome
	Release
	About
	Getting Started with IvorySQL
	Quick Start
	Monitoring
	Maintenance

	IvorySQL Advanced Feature
	Installation
	Building Cluster
	Developer
	Operation Management
	Migration

	IvorySQL Ecosystem
	PostGIS
	pgvector

	List of features
	1、Ivorysql frame design

	Chapter 1. Objective
	2、GUC Framework
	3、Case conversion
	4、Dual-mode design
	5、Compatible with oracle like
	6、Compatible with oracle anonymous block
	7、Compatible with Oracle functions and stored procedures
	8、Built-in data types and built-in functions
	9、Added Oracle compatibility mode ports and IP
	10、XML Function

	Community contribution
	Tool Reference
	FAQ

